Skip navigation

Monthly Archives: May 2012

We now generate electric city from heat, obtained by combustion of fossil fuel such as coal, oil and gas. But such combustion generates not only heat but also greenhouse gases such as Carbon dioxide and oxides of Nirogen.The only alternative to generate power without any greenhouse gas emission is to use a fuel with zero carbon. However, oxides of Nitrogen will still be an issue as long as we use air for combustion because atmospheric air has almost 79% Nitrogen and 21% oxygen. Therefore it becomes necessary to use an alternative fuel as well as an alternative power generation technology in the future to mitigate greenhouse problems.

Hydrogen is an ideal fuel to mitigate greenhouse gases because combustion of Hydrogen with oxygen from air generates only water that is recyclable. Combining Hydrogen with Oxygen using Fuel cell, an electrochemical device is certainly an elegant solution to address greenhouse problems. But why Hydrogen and Fuel cell are not commonly available? Hydrogen is not available freely even though it is abundantly available in nature. It is available as a compound such as water (H2O) or Methane (CH4) and Ammonia (NH3). First we have to isolate Hydrogen from this compound as free Hydrogen and then store it under pressure. Hydrogen can easily form an explosive mixture with Oxygen and it requires careful handling. Moreover it is a very light gas and can easily escape. It has to be compressed and stored under high pressure.

Generation of pure Hydrogen from water using Electrolysis requires more electricity that it can generate. However, Hydrogen cost can be reduced using renewable energy source such as solar thermal. The solar thermal can also supply thermal energy for decomposing Ammonia into Hydrogen and Nitrogen as well as to supply endothermic heat necessary for steam reformation of natural gas into Hydrogen. On-site Hydrogen generation using solar thermal using either electricity or heat can become a commercial reality. Hydrogen generation at higher temperatures such as Ammonia decomposition or steam reformation can be directly used in Fuel cell such as Phosphoric acid Fuel cell.

Phosphoric acid fuel cell is a proven and tested commercial Fuel cell that is used for base load power generation. It is also used for CHP applications. Hydrogen generation using solar thermal and power generation using Fuel cell is already a commercial reality and also an elegant solution to mitigate greenhouse gases. Large scale deployment of Fuel cell and solar thermal will also cut the cost of installations and running cost competing with fossil fuel.Fuecell technology has a potential to become a common solution for both power generation and transportation.

While Government can encourage renewable energy by subsidizing PV solar panels and discourage fossil fuel by imposing carbon tax, they should give preference and higher tariff for power purchase from Solar thermal and Fuel cell power generators. This will encourage large-scale deployment of Fuel cell as a potential base load power source.

Coal is the single largest fuel used for power generation all over the world, due to its abundant availability and established infrastructure and technology. However, greenhouse gas emission poses a significant challenge in continuing the usage of coal as prime fuel. Currently, Natural gas is favored as fuel for power generation and number of LNG (liquefied natural gas) plants have been set up in many parts of the world. Coal seam methane gas is another potential source that competes with natural gas. Basically, Methane is the major constituent of such gases in the form of Hydrogen  and they are suitable for both combustion as well as for gasification for power generation. Countries who are endowed with large deposits of coal such as Australia, South Africa, Indonesia have advantages in clean coal technologies and in reducing their greenhouse gas emissions. There is an opportunity for coal-fired power plants to continue their operations, if they can solve the greenhouse gas emission and other pollution problems associated with coal. Number of companies are now re-evaluating clean coal technologies such as IGCC and carbon capture and reuse.

As we have seen in previous articles, Hydrogen is the key in developing clean coal technology of the future. That is why, gasification technology such as IGCC (Integrated Gasification and Combined Cycle) is gaining importance over combustion technologies because that is the only way we can introduce a Hydrogen molecule in the combustion by way of ‘Syngas’. By introducing Hydrogen, we not only can improve the thermal efficiency but also use the heat of combustion to the most by combined cycle with reduced GHG emission. It also facilitates the usage of existing and known power generation technologies such as, steam turbine and gas turbine, as well as, new technologies such as Fuel cell and Hydrogen turbines.

Coal in the form of pumpable liquid (CWS –coal water slurry) is another key milestone in developing a clean coal technology. Countries like China and Indonesia have been using coal water slurry for power generation successfully. Finely powdered coal is mixed with water in the ratio of 60:40 along with dispersant such as Lignosulfonate as additives to make a finely dispersed, viscous liquid that resembles heavy petroleum oil, ready for combustion. It is easier to handle pumpable oil than a solid coal.

A novel products called ‘colloidal coal water’ (CCW) is a finely dispersed colloidal coal in water with additives such as surfactants and dispersants with specific formulating agents leading to certain rheological properties is a key development in clean coal technology. The coal water slurry now used does not have long-term stability and storage properties like colloidal coal water fuel. The work is under development and it is expected that such finely dispersed colloidal coal water mix resembling a liquid hydrocarbon may be named as ‘liquid coal’ for all practical purposes will become a low-cost fuel in the future power generation.

This ‘colloidal coal liquid’ can be easily gasified or used as liquid fuel for combustion equipment such as boilers and also serve as precursor for a number of chemical product synthesis as downstream products. The emitted Carbon dioxide can be captured cryogenically and separated in a pure form for potential application such as ‘Natural Refrigerant’ and to synthesize number of chemical products. Clean coal can become a commercial reality provided we re-evaluate the coal preparation, gasification methods and to contain emitted carbon into a useful product of commerce.

How many of us think  about the Sun and Sea, when you drink ‘Mineral water’ from that ‘PVC bottle’; or think about the PVC cables that transmit power to your home; or  eat  meal with a pinch of salt or bicarbonate; or when your municipal water treatment plant use Chlorine to disinfect your drinking  water? All these come from sea water energized by sun’s light, day after day, for several decades.

Every year 111 billion liters of seawater are evaporated using solar energy to produce 1.1 billion liters of brine. The amount of solar energy required to produce this, is equal to 11 million tons of coal, valued at US$ 1.10 billion. The brine is then crystallized to produce 2 million tones of solar salt, the essential raw material for 18 basic inorganic chemicals, including soda ash. Soda ash and Caustic soda are two fundamentals raw materials to chemical industries, as steel is to the engineering industries. This above statistics applies to one single manufacturer, and there are hundreds of manufacturers around the world.

Sun and sea are two great gifts of Nature to mankind. But industries use three great resources  namely Sun, seawater and a vast stretch of land often free of cost. Companies convert  seawater  into  salt using sun’s energy, manufacture valuable chemicals, sell them with profits   and then dump all toxic wastes on the soil and discharge all the industrial effluents back into the sea, polluting not only the source of their raw materials but also killing thousands of marine species they call ‘sea’ as their home.

Governments and EPA (government agencies) turn a blind eye to such pollution and give them clearance year  after year in each country for several decades, because they depend on taxpayer’s money to run their Governments. The manufacturer use these natural resources free of cost or at a fraction of  cost and make huge profits to their shareholders and pay tax to the Government, to make sure  that Governments don’t interfere with their activities. What is really happening is few rich and powerful are able to exploit the natural resources and enrich themselves with the help of Governments  at the cost of earth, water and air, we human beings habitat.

This avaricious exploitation of Nature has driven not only human beings but many animals and species to extinction. Basic needs of life such as water and air are polluted, man-made waste are dumped indiscriminately on soil, polluting the earth and ground water. The plastic manufactured using Nature’s sun and sea water, are dumped back on earth as non-biodegradable pollutants. This is how we repay Nature.

Human beings have caused an irreversible damage to Nature in the name of science, technology and industrialization at the cost of future generation, while enriching few rich and powerful. The damage is irreversible,  because we are forced to continue the same path to avert any disruption to our growth story. As long as we value materials over morals and ethics, there is no future and Nature will eventually turn its back with vengeance. We value how much a person is worth financially  rather  than, what a person can contribute to the uplifting of human beings and Nature. This is the crux of all problems in the world, including the financial crisis we are currently facing. We created the monster called ‘materialism’ and the same monster is now destroying humanity.

 

 

 

Ammonia is a well-known industrial chemical that is manufactured worldwide as a precursor for the production of Urea. The chemistry and technology of Ammonia synthesis is well-known and well established. It was a land mark achievement to fix atmospheric Nitrogen into the soil in the form of Urea as a fertilizer. It has 17.6% Hydrogen and 82.4% Nitrogen making it an ideal fuel for combustion when compared to Gasoline in terms of greenhouse gas emission because Ammonia no carbon. Handling free Hydrogen has always been a concern due to its explosive nature and lightness. Transportation of Hydrogen in the form of Ammonia is relatively cheaper and safer. A non-regulated Ammonia nursing tank at 265 psi pressure holds 3025kg Ammonia, containing 534kg Hydrogen, because a 5900 gallon Hydrogen tube trailer at 3200 psi pressure, contain only 350kgs of Hydrogen. Low pressure Ammonia tank with less than 25% volume contain more than 53% Hydrogen than a high pressure tube trailer. Ammonia has a lower volumetric energy density compared to other fuels.However, after subtracting energy required to elicit hydrogen from each fuel, hydrogen emerges with highest energy density compared to other fuels, and it is the only fuel which is carbon free. These qualities make Ammonia, a potential  substitute for Gasoline.

Ammonia need not be used as direct combustible fuel in internal combustion engines but it can be used as Hydrogen carrier safely and economically. The Hydrogen resulting from the decomposition of Ammonia can be used as fuel in a Fuel cell car as well as in a combustion engine. It can also be used to generate small on site power using a Fuel cell or IC engine. For example, 534kg Hydrogen can generate Electricity up to 10 MW and up to 6Mw thermal energy using a Fuel cell.

Currently ammonia is manufactured using fossil fuel source such as natural gas or naphtha to generate Hydrogen in the form of Syngas.But this can be effectively substituted with renewable source of Hydrogen such as Electrolysis of water using renewable solar thermal power or wind energy. Alternatively a biogas can be steam reformed to generate Hydrogen similar to natural gas. The generated Hydrogen can be compressed and stored.

Nitrogen forms 79% of atmospheric air and it can be obtained by air liquefaction and separation by distillation or by simple membrane separation method to separate air into Nitrogen and Oxygen. The resulting Nitrogen can be compressed and stored for Ammonia sysnthsis.Production of Ammonia using Bosch Haber process is well-known. Ammonia can be transported in pipelines, in tankers by road, rail or ship to various destinations.

Ammonia can be readily be used as fuel using a spark ignited combustion engine with little changes because Ammonia is classified as non-combustible fuel. Alternatively, it can be decomposed in a catalytic bed reactor and separated into Hydrogen and Nitrogen using PSA (pressure swing adsorption) system. The resulting Hydrogen can be stored to run a Fuel cell car like Honda FCX. Ammonia, as a Hydrogen carrier can substitute gasoline as an alternative fuel for transportation and power generation. All necessary technologies and systems are commercially available to make it a commercial reality.

 

We  acknowledge that solar energy is a potential renewable energy source of the future. The total energy need of the world is projected in the next 40 years to be 30 TW (terra watts) and only solar energy has a potential to meet the above demand. However, harnessing sun’s energy to its fullest potential is still a long way to go. Concentrated solar power (CSP) offers a greater hope to fill this gap. The main reason is the cost  advantage of CSP compared to PV solar and energy storage technologies and their costs.

The cost of PV solar has steadily decreased in the past few years. Though the cost of solar cell has come down to $0.75 per watt, the overall cost of the PV system is still around $ 3.00 per watt. This is due to the cost of encapsulation; interconnect wiring, mounting of panels, inverters and battery bank. The overall cost of the system will not come down drastically beyond a point. This makes PV solar still more expensive compared to conventional power generation using fossil fuels. People can understand the value of renewable energy and impending dangers of global warming due to greenhouse gases, but the final cost of energy will decide the future of energy sources.

In PV solar the sun’s light energy is directly converted into Electricity, but storing such energy using batteries have certain limitations. PV solar is suitable for small-scale operations but it may not be cost-effective for large-scale base load power generation. The best option will be to harness the sun’s thermal energy and store them and use them to generate power using the conventional and established methods such as steam or gas turbines. Once we generate thermal energy of required capacity then we have number of technologies to harness them into  useful forms. As we mentioned earlier, the thermal energy can trigger a chemical reaction such as formation of Ammonia by reaction between Hydrogen and Nitrogen under pressure, which will release a large amount of thermal energy by exothermic reaction. Such heat can be used to generate steam to run a stem turbine to generate power. The resulting ammonia can be split with concentrated solar power (CSP) into Hydrogen and Nitrogen and the above process can be repeated.

The same system can also be used to split commercial Ammonia into Hydrogen and Nitrogen. The resulting Hydrogen can be separated and stored under pressure. This Hydrogen can be used to fuel Fuel cell cars such as Honda FXC or to generate small-scale power for homes and offices.

By using CSP, there is potential of cost savings as much as 70% compared to PV solar system for the same capacity power generation on a larger scale. Focusing sun’s energy using large diameter parabolic troughs and concentrators, one can generate high temperatures.  Dishes can typically vary in size and configuration from a small diameter of perhaps 1 meter to much larger structures of a dozen or more meters in diameter.  Point focus dish concentrators are mounted on tracking systems that track the sun in two axes, directly pointing at the sun, and the receiver is attached to the dish at the focal point so that as the dish moves, the receiver moves with it.  These point focus systems can generate high temperatures exceeding 800ºC and even 1,800ºC.

The temperature required to run a steam turbine does not exceed 290C and it is quite possible to store thermal energy using mixture of molten salts with high Eutectic points and use them to generate steam. Such large-scale energy storage using lead-acid batteries and power generation using PV solar may not be economical. But it will be economical and technically feasible to harness solar thermal energy using CSP for large-scale base load power generation. It is estimated that the cost of such CSP will compete with traditional power generation using coal or oil in the near future.CSP has potential to generate cost-effective clean power as well as a fuel for transportation.

The city of Athens hosted its oldest tradition of lighting the Olympic torch for the 2012 London Olympic Games on Thursday in Olympia. The torch was lit by solar power; using parabolic mirror to redirect the sun’s light to light the flame with purest natural light. The thermal energy of sun’s light can be powerful when focused to a point and it can reach a temperature as much as 600C.The parabolic trough with reflective mirror focuses the sunlight on the tube called ‘collectors’ in which a fluid with high boiling point is circulated. The hot fluid in turn is used to convert water into steam in boiler. The hot oil transfers its heat to the water in a heat exchanger and returns back to the parabolic trough. It is a closed circuit system. The hot oil at 390C generates steam at 370C at 100 bar pressure, which is used to run a HP steam turbine. The standard steam condensing cycle generates power similar to fossil fuel fired power plant. A 50 Mw Trough plant in Israel (Negev Desert) is already in operation.

The capacity of such plant can be easily expanded by adding modular parabolic troughs and collectors and the plant can be designed to meet  specific power demands. This is a straight forward method to generate base load power using standard steam cycle. The efficiency of such system will be 41% maxium.However recently few companies are trying use a combined cycle. This increase the solar to heat efficiency from 50.5% to 53.6%.This nominal 50Mw power plant generates  a total peak power of 57.10Mw using a solar collection area of 310,028m2 with annual solar to electrical efficiency at 16.3% using a water-cooled condenser in the steam cycle. The cost of energy works out to $0.23 to $ 0.25 /kwhrs.

By using a central solar collection tower (Heliostat) and bottoming with Rankin/Kalina cycle ,it is estimated that the total installed cost can be reduced by 10%.The system can be configured from 2Mw up to 100Mw using both trough and tower system. The system can be installed in any remote, arid locations using air condensers, where cooling water is a problem. The estimated annual specific energy cost is less than 6 cents/kwhrs, comparable to low-cost fossil energy but with zero pollution and with zero carbon emission.

Solar thermal is a potential clean energy of the future for many countries around the world with yearlong sunshine with good intensisty.The solar thermal energy can also be used in many process industries where thermal heating is required. Solar salt pans can use solar thermal energy very efficiently to cut their production cycle. The concentrated brine can be used as a circulation fluid in solar collectors and also be used to generate power using low heat technologies like Kalina cycle, because concentrated salt brine can store thermal heat.

Gemasolar power in Spain is a base load power station supplying power for 25,000 homes 24×7 using molten salt (60% KNO3+40% NaNO3) as a thermal storage medium instead of batteries. Nine plants were built in 1980 in Mojave Desert with a combined capacity of 354 Mws.

Other examples of solar base load power plants are Blythe solar with capacity of 968Mw at Riverside County, California and Ivanpah power station with capacity of 370 Mw capacities in US. Large scale solar base load plants are no longer a theory but a commercial reality.

Direct solar lighting is also being introduced using fiber optics. The sun light is collected at a central point and directed through fiber optics to various rooms inside the building supplying direct sun light. This saves not only electricity but also provides natural light to work places because human body requires a certain amount of UV light exposure. Solar energy is here to stay and offer various clean energy solutions in the future.

 

 

Renewability and sustainability are two critical factors that will decide the future course of the world. We have to learn from Nature how sun is able to sustain life on earth for millions of years without the slightest hitch. The sun provides light energy for the photosynthesis to generate Carbohydrate using carbon dioxide from the atmosphere and water. The green pigment in the leaves of the plant ‘Chlorophyll’ catalalyses the photosynthesis. The plant grows and serves as food for animals. After certain period both the plant and animal dies and becomes carbon. New plants and animals are produced and the cycle continues. The dead plant decays and serves as manure for the new plant. A sequence of combinations of atmosphere, photosynthesis, micronutrients in the soil, absorption of carbon dioxide from air and release of Oxygen into the atmosphere, food production, life sustainenace, death and decay play like a symphony in an orchestra. Microorganisms too play their role in this cycle.

It is obvious from the above process that life cycle is based on ‘Renewability’.The  death and decay of the old plant gives way to the birth of new plant and new cycle. There is nothing static .It is a dynamic and cyclic process, where ‘Renewability’ is the key. Only with renewability the process can ‘sustain’. Without a cyclic nature, the process will end abruptly. In fact ‘renewability’ and ‘sustainability’ are closely linked.

When we try to develop a new source of energy it is absolutely critical that such a source is renewable and available directly from Nature. Sun is the prime source of such energy, though it is also available in other forms such as wind, wave, ocean thermal etc. Such renewability can come only from Nature because human life in intricately linked with Nature such as earth, sun and wind. Everything that happens in Nature is to support life on earth and not to destroy. This is a fundamental issue.

When we dig out Carbon from the earth  that was deeply buried by Nature and burn them, we release Carbon dioxide as well as Oxide of Nirtogen.Though our primary interest is only heat, we also create by-products such as greenhouse gases that upset the natural equilibrium. Nature can make some adjustments in order to maintain equilibrium; but when this limit exceeds, the equilibrium is upset creating a new environment, which may be alien to human life. This is unsustainable. Nature does not burn organic matter indiscriminately to generate Carbon dioxide to promote photosynthesis. It judiciously and delicately uses atmospheric Carbon dioxide without the slightest disturbance to the equilibrium. Many chemical reactions are irreversible and can cause irreversible damages, similar to ‘radiation’ from a nuclear reaction.

Whatever we do in the name of science, we will have to face their consequences, if we fail to understand the process of Nature completely and thoroughly. Fossil fuel sources are limited and burning them away to meet our energy demands is neither prudent nor sustainable. Human greed has no limit. We live in a finite world with finite resources and there is no place for infinite greed and destruction. There is no solution in Science for human greed.

 

Majority of current power generation technologies are based on thermodynamic principles of heat and work. Heat is generated by  chemical reactions such as combustion of coal, oil or gas with air or pure oxygen. This heat of combustion is then converted into work by a reciprocating engine or steam turbine of gas turbine. The mechanical energy is converted into electricity in power generation and as a motive force in transportation. The fundamental principles remain the same irrespective of the efficiencies and sophistication we incorporated as we progressed. The efficiency of these systems hardly exceeds 30-40 of the heat input, while the remaining 60-70 heat is wasted. We were also able to use this waste heat and improved the efficiency of the system by way of CHP (combined heat and power) up to 80-85%.But this is possible only in situations where one can use both power and heat simultaneously. In a centralized power plant such large heat simply dissipated as a waste heat through cooling towers and in the flue gas. This is a huge loss of heat because a substantial part of heat of combustion is simply vented into the atmosphere in the form of greenhouse gases. If ‘greenhouse gas’ and ‘Global warming’ were not issues of concern to the world, probably we would have continued our business as usual.

Generation of heat by combustion of hydrocarbon is one example of a chemical reaction. In many chemical reactions, heat is either released or absorbed depending upon the type of reaction, whether it is exothermic or endothermic. Sometimes these chemical reactions are reversible. It may release heat while the reaction moves forward and it may absorb heat while it moves backward in the reverse direction. By selecting such reaction one can make use of such energy transformations to our advantages. One need not release the heat and then release the product of reaction into the air like burning fossil fuels.

Ammonia is one such reaction. When Hydrogen and Nitrogen is reacted in presence of a catalyst under high temperature and pressure the reaction goes forward releasing a large amount of energy as practiced in industries using Heber’s process. The heat released by this reaction can be converted into steam and we can generate power using steam cycle. The resulting Ammonia can further be heated in presence of a catalyst by external heat due to endothermic nature of the reaction and split into Hydrogen and Nitrogen.  However, such heat can be supplied only from external sources. One University in Australia is trying use the above principle by using solar thermal energy as a source of external heat. The advantage of this system is power can be generated without burning any fossil fuel or emitting any greenhouse gas. One can use a renewable energy sources such as solar thermal and also use Ammonia as a storage medium.

Ammonia is a potential source of energy to substitute fossil fuels. However, such Ammonia is now synthesized using Hydrocarbon such as oil and gas. The source of Hydrogen is from synthesis gas resulting from steam reformation of a Hydrocarbon. Hydrogen can also be derived from water using electrolysis using renewable energy source. In both the above cases, renewable energy is the key, without which no Hydrogen can be produced without a Hydrocarbon or an external heat is supplied for splitting Ammonia.

Ammonia can also be split into Hydrogen and Nitrogen using external heat.  The resulting Hydrogen can be used to generate power using a Fuel cell or run a Fuel cell car. Nitrogen also has many industrial applications.Thereoefore ammonia is a potential chemical that can substitute fossil fuels in the new emerging renewable economy.

Those who studied chemistry and conducted laboratory experiments in universities will be familiar with precautionary measures we take to avoid  accidents. Aprons, gloves, goggles and fume cub-boards with exhaust fans are some few examples of protective measures from flames, hot plates and fumes. The blue color of the flame represented the degree of hotness of the flame from Bunsen burner; the pungent smell pointed to the ‘Gas plant’ that generated ‘water gas’ for Bunsen burners. The familiar smells of chemicals would bring ‘nostalgic memories’ of college days. Each bottle of chemicals would display a sign of warning ‘Danger or Poison’. We could recognize and identify even traces of  gases or fumes or chemicals immediately. Those memories embedded deeply in our memories and I vividly remembered even after few decades I left university.

I could smell traces of Chlorine in the air even at a distance of 20 miles from a Chloroalkali plant in sixties, when air pollution controls were not stringent. People who lived around the factory probably were used to live with that smell for generations. Many families had not breathed  fresh air in their life time, because they have not breathed air without traces of chlorine.They lived all their lives in the same place because agriculture was their profession. Many people developed breathing problems during  their old ages and died of asthma and tuberclosis.The impact of these fumes cannot be felt in months and years but certainly can be felt after decades especially at old ages, when the body’s immune system deteriorates. Bhopal gas accident in India is a grim reminder of  such tragedy of chemical accidents and how they can contaminate air, water and earth and degrade human lives. But we learnt any lessons from those accidents?

During experimental thermonuclear explosion in the desert of Australia by then British army, people were directly exposed to nuclear radiation. Many of those  who saw this explosion developed some form of cancer or other later in their life .They were treated as heroes then. After several decades of this incident, many exposed to this experiment are now demanding compensation from current British government. But have we learnt any lessons from those incidents? Many politicians still advocate ‘Nuclear energy as a safe and clean energy’. Yes, until we meet with an another accident!

We human beings identified the presence of  chemicals in Nature and used them for our scientific developments. We identified fossil fuels as ‘Hydrocarbons’ and burn them to generate power and to run our cars. We emit toxic gases and fumes every second of our lives, when we switch our lights on or start our cars.Imagine the amount of gases and fumes we emit everyday all over the world by billions of people for several decades. It is a simple common sense that we are responsible for these emissions and we contaminate the air we breathe. Nature does not burn Hydrocarbons everyday or every month or every year. In fact Nature buried these Hydrocarbons deep down the earth like we bury our dead.

Can people who breathed Chlorine for decades and died of asthma or tuberculosis prove that they died due constant inhalation of Chlorine emitted by the Chloroalkali plant? The Court and Authorities will demand ‘hard evidence’ to prove that Chlorine emitted by Chloroalkli plants caused these diseases. We use science when it suits us and we become skeptics when it does not suit us. They know it is almost impossible to prove such cases in our legal system and they can get away scot-free. The same argument applies to our ‘Greenhouse gas emission’ and ‘Global warming’.

We contaminate  our air, water and earth with our population explosion, industrialization and our life styles. Yet, major industrialized countries are not willing to cut their emissions but want to carry on their ‘economic growth’. But these countries got it completely wrong. In chemical experiments, one can draw conclusions by ‘observations’ and ‘Inference’. Inference is a scientific tool and not a guess work. From overwhelming evidences of natural disasters occurring around the world one can ‘infer’ that human activities cause these disasters. Nature is now showing this by devastating ‘the business and economic’ interest of nations because that is the only way Governments can learn lessons. They don’t need ‘harder evidence’ than  monetary losses. According to recent reports:

“The monetary losses from 2011’s natural catastrophes reached a record $380 billion, surpassing the previous record of $220 billion set in 2005. The year’s three costliest natural catastrophes were the March earthquake and tsunami in Japan (costing $210 billion), the August-November floods in Thailand ($40 billion), and the February earthquake in New Zealand ($16 billion).

The report notes that Asia experienced 70 percent, or $265 billion, of the total monetary losses from natural disasters around the world—up from an average share of 38 percent between 1980 and 2010. This can be attributed to the earthquake and tsunami in Japan, as well as the devastating floods in Thailand: Thailand’s summer monsoons, probably influenced by a very intensive La Niña situation, created the costliest flooding to date, with $40 billion in losses.”

A safe and clean water supply is becoming a scarce commodity in many parts of the world. With growing   population and rapid industrialization, the demand for water has increased dramatically. This in turns pushes the demand for energy and fossil fuels resulting in further increase in global warming. According to WHO (World Health organization) specifications, a clean and safe water should be free from pathogenic organism such as bacteria and virus, and also the TDS (Total dissolved solids) levels should be below 500ppm (parts per million). Unfortunately such quality water is not readily available from surface or ground water. The water stored in catchment area for supply of drinking water to cities requires certain chemical and biological treatments before it can meet WHO specification.

In many smaller cities especially in developing countries such treated drinking water is not available. NASA’s Gravity Recovery and Climate Experiment Satellite or GRACE orbiting earth in tandem, two satellites are able to measure the water storage on ground and below across the world. The NASA data shows that most of area in Northern India will be facing a severe shortage of water in the near future because farmers are pumping ground water   at an alarming rate. The ground water is getting depleted faster than it is being replenished. The water table has gone deeper and deeper and many of the pumps they used five to ten years ago cannot pump water anymore because the water levels have gone so deep. States like Punjab, supposed to be ‘wheat bowl of India’ are facing water shortage. Farmers who have used 100 feet bore well are now digging their bore well up to 900 feet. To make the situation worse, many of coal-fired power plants are licensed to meet the increasing power demand in India. Both quantity and quality of water has a direct impact on energy demand and global warming. The rainwater which replenished the ground aquifers are unable to match the water sucked by these pumps. About 114 million people living in Rajasthan, Punjab, and Haryana including the capital city of Delhi are facing water shortage.

The likely alternative for these states is to desalinate the seawater from the west coast of India and pump them all the way to Delhi, which are thousand of kilometers from the coast. The increasing economic growth of India has increased the demand for power, often based on coal. Power industry is one of the largest users of water. Plants located on coastal are able to use seawater for their ‘once through’ cooling system and for boilers. But the plants located inland have to use only surface water like rivers. They cannot use ‘once through’ system, but use a closed circuit cooling systems where they have to store large pool of hard water.

It is a vicious cycle. Water shortage increase the demand for power and power shortage increases the demand for water. Desalination is the only alternative but it is a very energy intensive and a costly solution. Changing climate, global warming, deforestation, and water shortage are ominous signs of Nature’s fury against human greediness.

When countries like Australia set up their largest desalination facilities, the country experiences the heaviest rains in decades with flash flooding in many parts, making politicians wonder whether their water management decisions are right. Unfortunately Science cannot solve our greediness only human beings can learn lessons from Nature and take right decisions.

 

 

%d bloggers like this: