Skip navigation

Monthly Archives: August 2012

Coal is still the dominant fuel used for power generation due to its low-cost and abundant availability despite its emission problems and global warming issues. Companies around the world are trying to improve the efficiency of coal-fired power plants and cut emissions by various methods. The idea is to prepare an ultra clean coal with very low ash content in the form of coal-water slurry that can be directly injected into a diesel engine. Direct firing of coal requires micronising to less than 20-30 microns for diesel engine and less than 10 microns for turbines and producing a coal water slurry with at least 50% w/w coal content. The thermal and combustion efficiency of coal water fuel seems to be matching to that diesel engine at up to 1900rpm according to literatures. Still more research is required on engine modification and engine nozzle to handle coal water slurry because of its abrasive nature. If coal can be converted into a fluid like a diesel or Fuel oil then it can substitute diesel at reduced cost. However the Carbon problem needs to be addressed by ongoing research on sequestration.

Nanotechnology is an emerging field that offers hope to produce Colloidal coal water fuel that resembles fuel oil that may be suitable for direct injection into diesel engine with little modifications. The colloidal suspensions of coal in water (CCW) are produced using a proprietary wet-combination device. These suspensions are a new material with new properties.

“First, the colloidal fraction plus water is a pseudo fluid good for transport, handling and suspension of large particles. Second, the surface area per unit volume of coal available for chemical reaction and burning is greatly increased and finally, CCW may be milled with a third fluid, seeding the mixture with submicron coal. The colloidal nature of the majority of particles provides for very good features such as outstanding long-term stability, in contrast to regular coal water slurries (CWS) which rapidly sediment under storage. Moreover, the very small particles create an increased reactivity to combustion because small particles with large surface area react faster than large particles with the same volume.”

A company based in Panama has conducted experiments using colloidal coal water fuel and published the following information.

CCW suspension preparation and properties Characterization

“The colloidal dispersion are prepared in two stages: first by a bench mill and then by our wet- comminuting device. The bench mill was manufactured by IKA®- Group. After grinding,   samples were sieved using mesh size sieves 40 (400 μm), 70 (212 μm) or 140- (106 μm) and the passing particles were retained and used to prepare coal suspensions with various water contents (30 to 50 %), surfactants and other type of additives. These mesh sizes are not foreign to coal-fired power plants.  It is noteworthy that a preliminary formulation study is first necessary to decide the type and concentration of additives that are best suited to improve coal particle wetting and reduce viscosity. The additives were mostly surfactants and viscosity controlling agents and every type of coal tested usually required a specific formulation. In general, it was found that nonionic surfactants were good wetting agents, in concentrations varying from 0.1 to 0.6 w/w %. Some of the additives used to reduce viscosity by decreasing particle interactions, before or after the wet comminuting process, were amines. The suspension formulation previous to the wet-comminuting instance was very simple since what was basically required was a good wetting agent or a combination of two wetting agents. The idea was to have a uniform mixture with as low viscosity as possible.

Particle size of coal samples was determined by direct observation in an optical microscope, or by sieving using five or six different sieves ranging from 20 to 400 μm, or using a laser diffraction apparatus made by Microtrac Corporation, Nanotrac model, having a measurement range from 8 nm to 6.5 μm. Neither of these methods was sufficient to obtain a complete characterization of the particle size distributions, but a combination of the three allowed for a good assessment of what really was in the suspension, before and after the wet-comminuting process.

In our study, the percentage of mass passing the 635 mesh size sieve (< 20 μm) was used as an indicator of wet-comminuting process efficiency (generation of colloidal particles), given that microscopic observations generally showed that particles between 8 to 20 μm were very scarce. The preparation of the colloidal suspension of coal was centered in a technology that is totally based on fluid mechanics principles. As mentioned above, a preliminary suspension was prepared in a tank with low agitation and the appropriate water and surfactants contents. This suspension is then fed into a device that spins a film of the fluid to the walls of a cylindrical vessel at very high-speed and under cavitation free conditions. The resulting flow field induces a “particle trap” region where coal particles are locally concentrated above their nominal value and under very high shear. Particles are then milled to very small sizes by a wet-comminuting mechanism. Friction heating is controlled by a chilled water jacket around the vessel.

A schematic view of the set up is shown in the attached figure.

The energy consumed by the wet-comminuting device was evaluated by monitoring the power (voltage and amperage) during the process. The latter has two components, the power required to drive the motor shaft and mechanical seal, and the net power consumed by the fluid during comminuting. It was found that the net power divided by the mass flow rate, in terms of kWH/ton depended on coal content and viscosity of the preliminary slurry, exhibiting values of 30 to 80 kWh/ton. The energy consumed by the motor shaft and seal would account for 50 to 80 % of the total power consumed. Using the method described above, 100 gallons of CCW were prepared, using an Eastern bituminous coal that was previously grinded to 200 mesh. Several properties of this sample were characterized.”

Colloidal coal water fuel has certain distinct advantages over conventional coal water slurry for power generation using conventional diesel engine and turbines. Further research and development work is needed before it can be expanded for large-scale production. But it offers a hope to improve the efficiency of existing coal-fired power plants and reduces emissions.

People in the chemical field will understand the concept of ‘irreversibility’. Certain chemical reactions can go only in one direction and but not in the reverse direction. But some reactions can go on either direction and we can manipulate such reactions to our advantages. This concept has been successfully used in designing many chemical reactions in the past and many innovative industrial and consumer products emerged out of it. But such irreversible reactions also have irreversible consequences because it can irreversibly damage the environment we live in. There is no way such damage can be reversed. That is why a new branch of science called ‘Green Chemistry’ is now emerging to address some of the damages caused by irreversible chemical reactions. It also helps to substitute many synthetic products with natural products. In the past many food colors were made out of coal-tar known as coal-tar dyes. These dyes are used even now in many commercial products. Most of such applications were merely based on commercial attractiveness rather than health issues. Many such products have deleterious health effects and few of them are carcinogenic. We learnt from past mistakes and moved on to new products with less health hazards. But the commercial world has grown into a power lobby who can even decide the fate of a country by influencing political leaders. Today our commercial and financial world has grown so powerful that they can even decides who can be the next president of a country rather than people and policies. They can even manipulate people’s opinion with powerful advertisements and propaganda tactics by flexing their financial muscles.

Combustion of fossil fuel is one such example of ‘irreversibility’ because once we combust coal, oil or  gas,  it will be decomposed into oxides of Carbon, oxide of  Nitrogen and also oxides of Sulfur and Phosphorous depending upon the source of fossil fuel  and purification methods used. These greenhouse gases once emitted into the atmosphere we cannot recover them back. Coal once combusted it is no longer a coal. This critical fact is going to decide our future world for generations to come. Can we bring back billions of tons of Carbon we already emitted into the atmosphere from the time of our industrial revolution? Politicians will pretend not to answer these question and financial and industries lobby will evade these question by highlighting the ‘advancement made by industrial revolutions’. People need electricity and they have neither time nor resources to find an alternative on their own. It is open and free for all. People can be skeptical about these issues because it is ‘inconvenient for them’ to change But can we sustain such a situation?

Irreversibility does not confine only to chemical reactions but also for the environment and sustainability because all are intricately interconnected.Minig industries have scared the earth, power plants polluted the air with greenhouse emission and chemical industries polluted water and these damages are irreversible. When minerals become metals, buried coal becomes power and water becomes toxic effluent then we leave behind an earth that will be uninhabitable for our future generations and all the living species in the world. Is it sustainable and can we call it progress and prosperity? Once we lose pristine Nature by our irreversible actions then that is a perfect recipe for a disaster and no science or technology can save human species from extinction. One need not be scientist to understand these simple facts of life. Each traditional land owners such as Aborigines of Australia or Indians of America and shamans of Indonesia have traditionally known and passed on their knowledge for generations. They too are slowly becoming extinct species in our scientific world because of our irreversible actions. Renewability is the key to sustainability because renewability does not cause irreversible damage to Nature.

 

All existing power generation technologies including nuclear power plants uses heat generation as a starting point. The heat is used to generate steam which acts as a motive force to run an alternator to produces electricity. We combust fossil fuels such as coal oil and gas to generate above heat which also emits greenhouse gases such as oxides of Carbon and Nitrogen. As I have disused in my earlier article, we did not develop a technology to generate heat without combusting a fossil fuel earlier. This was due to cheap and easy availability of fossil fuel. The potential danger of emitting greenhouse gases into the atmosphere was not realized until recently when scientists pointed out the consequences of carbon build up in the atmosphere. The growth of population and industries around the world pushed the demand for fossil fuels over a period which enhanced the Carbon build up in the atmosphere.

But now Concentrated Solar Power (CSP) systems have been developed to capture the heat of the sun more efficiently and the potential temperature of solar thermal can reach up to 550. This dramatic improvement is the efficiency of solar thermal has opened up new avenues of power generation as well as other applications. “CSP is being widely commercialized and the CSP market has seen about 740 MW of generating capacity added between 2007 and the end of 2010. More than half of this (about 478 MW) was installed during 2010, bringing the global total to 1095 MW. Spain added 400 MW in 2010, taking the global lead with a total of 632 MW, while the US ended the year with 509 MW after adding 78 MW, including two fossil–CSP hybrid plants”. (Ref: Wikipedia)

“CSP growth is expected to continue at a fast pace. As of April 2011, another 946 MW of capacity was under construction in Spain with total new capacity of 1,789 MW expected to be in operation by the end of 2013. A further 1.5 GW of parabolic-trough and power-tower plants were under construction in the US, and contracts signed for at least another 6.2 GW. Interest is also notable in North Africa and the Middle East, as well as India and China. The global market has been dominated by parabolic-trough plants, which account for 90 percent of CSP plants.As of 9 September 2009, the cost of building a CSP station was typically about US$2.50 to $4 per  watt, the fuel (the sun’s radiation) is free. Thus a 250 MW CSP station would have cost $600–1000 million to build. That works out to $0.12 to $0.18/kwt. New CSP stations may be economically competitive with fossil fuels. Nathaniel Bullard,” a solar analyst at Bloomberg

New Energy Finance, has calculated that the cost of electricity at the Ivanpah Solar Power Facility, a project under construction in Southern California, will be lower than that from  photovoltaic power and about the same as that from natural gas  However, in November 2011, Google announced that they would not invest further in CSP projects due to the rapid price decline of photovoltaics. Google spent $168 million on Bright Source IRENA has published on June 2012 a series of studies titled: “Renewable Energy Cost Analysis”. The CSP study shows the cost of both building and operation of CSP plants. Costs are expected to decrease, but there are insufficient installations to clearly establish the learning curve. As of March 2012, there was 1.9 GW of CSP installed, with 1.8 GW of that being parabolic trough” Ref: Wikipedia.

One Canadian company has demonstrated to generate Hydrogen from water using a catalytic thermolysis using sun’s high temepertaure.The same company has also demonstrated generating base load power using conventional steam turbine by  CSP using parabolic troughs. They store sun’s thermal energy using a proprietary thermic fluid and use them during night times to generate continuous power. The company offers to set up CSP plants of various capacities from 15Mw up to 500Mw.

 

 

 

 

 

 

 

Renewable Hydrogen offers the most potential energy source of the future for the following reasons. Hydrogen has the highest heat value compared to rest of the fossil fuels such as Diesel, petrol or butane. It does not emit any greenhouse gases on combustion. It can readily be generated from water using your roof mounted solar panels. The electrical efficiency of fuel cell using Hydrogen as a fuel is more than 55% compared to 35% with diesel or petrol engine. It is an ideal fuel that can be used for CHP applications. By properly designing a system for a home, one can generate power as well as use the waste heat to heat or air-condition your home. It offers complete independence from the grid and offers complete insulation from fluctuating oil and gas prices. By installing a renewable Hydrogen facility at your home, you can not only generate Electricity for your home but also fuel your Hydrogen car. The system can be easily automated so that it can take care of your complete power need as well as your fuel requirement for your Hydrogen car. Unlike Electric cars, you can fill two cylinders of a Hydrogen car which will give a mileage of 200miles.You can also charge your electric car with Fuel cell DC power.

Renewable Hydrogen can address all the problems we are currently facing with fossil fuel using centralized power generation and distribution. It will not generate any noise or create any pollution to the environment. It does not need large amount of water. With increasing efficiency of solar panels coming into the market the cost of renewable Hydrogen power will become competitive to grid power. Unlike photovoltaic power, the excess solar power is stored in the form of Hydrogen and there is no need for deep cycle batteries and its maintenance and disposal. It is a one step solution for all the energy problems each one of us is facing. The only drawback with any renewable energy source is its intermittent nature and it can be easily addressed by building enough storage capacity for Hydrogen. Storing large amount of energy is easy compared to battery storage.

The attached ‘You Tube’ video footage show how Solar Hydrogen can be used to power your home and fuel your Hydrogen car. Individual homes and business can be specifically designed based on their power and fuel requirements.

There is a raging debate going on around the world especially in US about the global warming and its causes, among scientists and the public alike. When IPCC released its findings on the connection between greenhouse gas emission and the global warming and its disastrous consequences, there was an overwhelming disbelief and skepticism in many people. In fact many scientists are skeptical even now   about these findings and many of them published their own theories and models to prove their skepticism with elaborate ‘scientific explanations’.   I am not going into details whether greenhouse gas emission induced by human beings causes the globe to warm or not, but certainly we have emitted billions of  tons of Carbon in the form of Carbon dioxide into the atmosphere since industrial revolution. Bulk of these emissions is from power plants fueled by Coal, oil and gas. Why power plants emit so much Carbon into the atmosphere and why Governments around the world allow it in the first place?  When the emission of Oxide of Nitrogen and Sulfur are restricted by EPA why they did not restrict Oxides of carbon? The reason is very simple. They did not have a technology to generate heat without combustion and they did not have a technology to generate power without heat. It was the dawn of industrial revolution and steam engines were introduced using coal as a fuel. The discovery of steam engines was so great and nobody was disturbed by the black smoke it emitted. They knew very well that the efficiency of a steam engine was low as shown by Carnot cycle, yet steam engine was a new discovery and Governments were willing to condone Carbon emission. Governments were happy with steam engine because it could transport millions of people and goods in bulk across the country and Carbon emission was not at all an issue. Moreover carbon emission did not cause any problem like emission of oxides of Sulfur because it was odorless, colorless and it was emitted above the ground level away from human beings. However the effect of Carbon is insidious. Similarly, power generation technology was developed by converting thermal energy into electrical energy with a maximum efficiency of 33%.This means only 33% of the thermal energy released by combustion of coal is converted into electricity. When the resulting electricity is transmitted across thousands of kilometers by high tension grids, further 5-10% power is lost in the transmission. When the high tension power is stepped down through sub stations to lower voltage such as 100/200/400V further 5% power is lost. The net power received by a consumer is only 28% of the heat value of the fuel in the form of electricity. The balance 67% of heat along with Greenhouse gases from the combustion of coal is simply vented out into the atmosphere. It is the most inefficient method to generate power. Any environmental pollution is the direct result of inefficiency of the technology. Governments and EPA around the world ignore this fact .Thank to President Obama who finally introduced the pollution control bill for power plants after 212 years of industrial revolution.  Still this bill did not go far enough to control Carbon emission in its current form. Instead of arguing whether globe is warming due to emission of Carbon by human beings or not, Scientists should focus on improving the science and technology of power generation. For example, the electrical efficiency of a Fuel cell is more than 55% compared to conventional power generation and emits reduced or no carbon. Recent research by MIT shows that such conversion of heat into electricity can be achieved up to 90% compared to current levels of 35%.Had we developed such a technology earlier, probably we will not be discussing about GHG and global warming now. MIT research group is now focusing on developing new type of PV and according to their press release: “Thermal to electric energy conversion with thermophotovoltaics relies on radiation emitted by a hot body, which limits the power per unit area to that of a blackbody. Micro gap thermophotovoltaics take advantage of evanescent waves to obtain higher throughput, with the power per unit area limited by the internal blackbody, which is n2 higher. We propose that even higher power per unit area can be achieved by taking advantage of thermal fluctuations in the near-surface electric fields. For this, we require a converter that couples to dipoles on the hot side, transferring excitation to promote carriers on the cold side which can be used to drive an electrical load. We analyze the simplest implementation of the scheme, in which excitation transfer occurs between matched quantum dots. Next, we examine thermal to electric conversion with a glossy dielectric (aluminum oxide) hot-side surface layer. We show that the throughput power per unit active area can exceed the n2 blackbody limit with this kind of converter. With the use of small quantum dots, the scheme becomes very efficient theoretically, but will require advances in technology to fabricate.” Ref:J.Appl.Phys. 106,094315c(2009); http://dx.doi.org/10.1063/1.3257402 Quantum-coupled single-electron thermal to electric conversion scheme”. Power generation and distribution using renewable energy sources and using Hydrogen as an alternative fuel is now emerging. Distributed energy systems may replace centralized power plants in the future due to frequent grid failures as we have seen recently in India. Most of the ‘black outs’ are caused  by grid failures due to cyclones, tornadoes and other weather related issues, and localized distribution system with combined heat and power offers a better alternative. For those who are skeptical about global warming caused by man-made greenhouse gases the question still remains, “What happened to billions of tons of Caron dioxide emitted into  the atmosphere by power plants and transportation  since industrial revolution?”.          

%d bloggers like this: