Skip navigation

Category Archives: Automation

There is a general opinion that Hydrogen is dangerous or explosive; people are often reminded of Hindenburg accident or Hydrogen bombs. Hydrogen is as safe as Gasoline or Butane gas. It should be handled with care like any combustible material. We have used Hydrogen in industries for so many decades and transported by pipelines across thousands of kilometers; the methods and procedures of handling Hydrogen is well established. It is a very light, colorless and odorless gas and it can easily escape into the atmosphere. Hydrogenation of vegetable oils for production of certain Margarines is one the classical industrial examples for Hydrogen usage. When 100m3 Hydrogen is compressed to 10,000psi pressure, it is reduced to just 0.163 m3 by vlume.That is how the Hydrogen storage space is reduced in passenger cars. This volume of gas can give a mileage of 652 miles, using Fuel cell power. The only emission is just pure water vapor! No noise, no smoke and it is entirely a new experience driving a Hydrogen Fuel cell car.

Powering your home with Hydrogen or fuelling your Fuel cell car is not very difficult. It is expensive compared to grid power for two simple reasons. Grid power is generated by power generation companies somewhere else using coal, oil or gas and transmitted across to millions of people.Therefore,  the  investment on power generation is shared by millions of people through their monthly energy bills. When you use the grid power, you do not pay any large sum except, a small deposit of few hundred dollars towards connection fee, and you pay your bills based on your monthly electricity usage.

But when you try to generate your own power using a solar panel or Fuel cell then you have to make an investment fully upfront. Of course, your bank can help you with the finance for the system. However, when you calculate the energy cost over the life period of 25 years then you can clearly see the value of such investment. The grid power cost will only increase and never decrease while your generation cost will decrease as the time passes. The future energy cost is likely to increase substantially due to various factors. You can export surplus power to the grid and your payback time will be reduced as the energy cost increases.

The first step in powering your home is to calculate your power requirements accurately in terms of watt.hrs.How many appliances you will be using  and how many hours you will using each of these appliances per day. Suppose you estimate 15,000 watt.hrs/day or 15kwhrs/day of power, and then a small Fuel cell consuming 1 Kg/day of Hydrogen or 30 kgs/month of Hydrogen will be sufficient to meet your power demand. Similarly you can calculate the amount of Hydrogen you will be using as a fuel for your Fuel cell car. For example, if you will be  driving your Fuel cell car for 1000 miles per month, then  your Hydrogen requirement will be about 14 kgs/month. Your Hydrogen requirement per month for both power and car together will be 44 kgs only.

Your total  power need to generate the above Hydrogen will be 2464 kwhrs/month costing less than $250 per month for both power and fuel. Of course you need to calculate other fixed costs on the investment. You can export your solar power at a higher tariff to the Government and import your power requirement from the grid during off-peak season at a lower tariff and generate Hydrogen and store it. You can generate your power as and when you need, and you are in complete control of your situation, even if there is a blackout due to grid failure!


The sun is bright and warm and your roof top solar panels and solar heaters are working hard to generate power and hot water. But the rate of power generated is too small to use immediately. The hot water is not hot enough for your shower. Your 200 watt rooftop solar panel generates only 0.12 kwhrs after 5 hours of hard work. It does not meet your expectations. You expect 200 watts solar panel to generate about 1000 watt.hrs (1kwhr) in 5 hours. It is not happening. You don’t think renewable energy can meet your electricity demand.

There is a strong wind in the island and the wind turbines are rotating faster than usual but there are hardly any people living there. Wind turbine generates good power when the wind velocity is above certain level. But the electricity generated by the wind has no immediate takers.

There is a good rain this year and the dams are overflowing and the Hydro is generating surplus power but not many people are living near the catchment area. The power has to be transmitted hundred of kilometers to the nearby town through a sub-station. When the dams are dry there is hardly any power generation and power supply is rationed to the town.

When there is a demand for power Mother Nature does not offer the resources for power generation. When Mother Nature offers the resource we do not need power. This anomalous situation is the single largest obstacle that is undermining the potential of renewable energy. Of course, the high initial cost and half-hearted approach by Governments to offer subsidies or grants for renewable energy are other factors that add to the anomaly.

The only option to get over this situation is to store the energy 24×7 when it is generated and use them when we need them. It requires good storage technology, automation and information technology that can communicate with Natures energy resources and harness them, store them and deploy them judiciously and intelligently to meet our demands.

Current battery technology cannot be a long-term sustainable solution; it is expensive, requires constant maintenance and replacement, which adds to the expensive initial investment on renewable systems. The best option is to generate Hydrogen on-site when sunshine’s or wind blows and store them under pressure that can be used as and when we need electricity using Fuel cell. It is easier to handle gas than stored electricity in batteries. Batteries are very heavy, has a limited life cycle and poses health hazard and not suitable for large-scale power storage and not sustainable in the long run.

An Electrolyzer can generate Hydrogen from water on site when a sun or wind energy available and they can work from 10% to 100% capacity depending upon the availability of renewable resources. The surplus power from Hydro can be converted into Hydrogen and stored. With so much advancement in information and communication technology, harnessing nature’s energy, storing them and deploying them in a timely manner is not major issue. Hydrogen can bridge the gap between Nature resource availability and human demand. This is what science is all about. We developed science by learning from Nature or duplicating Nature and Renewable energy is nothing different.

%d bloggers like this: