Skip navigation

Category Archives: Clean energy

Energy generation and usage is considered not only as a mark of progress of a nation but also security of a nation. That is why countries go to extraordinary distance to achieve such a security and everything else becomes secondary in the path of their goal. That is why countries with high oil and gas reserves enjoy good relationship and privileges with powerful nations of the world. Countries who do not have their own oil and gas reserves and who completely rely on import of oil and gas have no choice but maintain a good relationship with oil rich countries despite their difference in ideologies and policies. But with warming globe and changing climate the dependence on fossil fuels is fast becoming unsustainable and countries look for alternatives. It is good news for the whole world especially for nations who depend completely on import of oil and gas because they can develop their own renewable energy sources to lower their emissions. But there is one major difference. Countries who depend on import of oil and gas required to develop only an infrastructure to store and distribute oil and gas, But with renewable energy they have to develop an infrastructure to produce the hardware necessary to use alternative energy sources such as solar, wind, geothermal  but also energy storage such as batteries. The warming globe and changing climate have become a grave threat to the plant earth and a threat to lives of entire future generations. It is the greatest challenge of the industrialized world. One can view this as threat or as an opportunity. But it is time to act irrespective of our views and we must act now.

It is an opportunity for scientists and engineers to view energy sources and their applications in a new perspective. It is an opportunity to understand how human activities affect our environment and how not to damage them but preserve them for our future generations while developing new alternatives. Humanity is just a part of a larger environment and any damage to planet earth is at our own peril. It is an ancient wisdom, but we neglected them. When an aboriginal of Australia said “we belong to earth and earth does not belong to us” we failed to listen to them. We(people) became bigger than They (environment).

In pursuit of a new energy source one must be extremely careful in examining Nature and how she operates so that we do not make the same mistakes of the past. As we develop renewable energy as a potential energy source of the future, we should be aware of the life cycle of such a system and their impact on environment. Renewable energy requires hardware that uses exotic metals, catalysts, polymers, new Carbon sources and glasses. As we switch to Carbon free economy, we should make sure that there are no emissions in developing renewable energy sources and if necessary impose Carbon tax on such emissions and, to develop recycling technologies to recycle that hardware safely and environmentally friendly manner. It is critically important issue as we move forward. According to an article published in Chemical engineering News

“The potential quantities of waste are enormous. By 2025, waste batteries removed from electric vehicles will total 95 Giga watt hours, according to an estimate by Bloomberg New Energy Finance. That pile will weigh roughly 600,000 metric tons.

A similar amount of old solar panels will have accumulated by then, according to projections by the International Renewable Energy Agency. IRENA anticipates solar panel waste could reach 78 million metric tons by 2050. And Europe could see 300,000 metric tons per year of decommissioned wind turbine blades in the next two decades, says the trade association Wind Europe.

Each year, approximately 300,000 metric tons of lithium-ion battery waste is generated around the world, says Sheetanshu Upadhyay, an analyst with India’s Esticast Research & Consulting. Most of those batteries come from mobile devices, but that waste will soon be overshadowed by old electric car batteries. Sales of plug-in electric vehicles are expected to surpass 2.6 million in 2020, according to Navigation Research.”

The above data shows the amount of CO2 emission associated with implementation of renewable energy sources soon. There is a potential for large scale recycling industries on renewables, but it will come with a price and environmental issues. Right now, the main problem is the CO2 emission and the only way to tackle this problem is impose Carbon tax on emissions while encouraging industries with low emission technologies. It should be possible for UN to pass a unanimous resolution among the nations to address climate change by imposing Carbon tax uniformly across the nation. By such resolution UN can bring all those countries to the table who are currently reluctant to be a party to the Paris accord. Countries can use “Carbon rating” similar to “energy ratings” currently used for measuring energy efficiencies in appliances such as Heaters and air-conditioners. The lowest emitting technologies will get the highest Carbon rating while high emission technologies will get the lowest Carbon ratings. By using such a method country who are reluctant to act on climate change will be disadvantaged; they will not be able to compete in international market or export their goods to low emitting countries based on Carbon ratings.

 

Recycling PV solar panelsRecycling renewablesRecycling wind turbines

Generating electricity using fossil fuel is a well-established technology, that has been practiced over several decades all over the world, despite its low efficiency. But this technology inherited certain disadvantages even before it was commercialized such as post combustion emissions, large amount of waste heat, and water intensity. Millions of people died of Carbon pollution over decades. Large scale usage of water both inland and on shore power stations created shortage of drinking water in many parts of the world resulting in desalination technologies creating its own environmental issues. Large scale mining of coal and unsustainable exploitation of oil and gas both on shore and off shore caused enormous environmental pollution. However, such emissions were completely ignored while the world celebrated the discovery of electro-magnetism, steam engine and petrochemicals. Millions of people were employed, and industries grew worldwide. Energy became synonymous with security of a nation. Population grew exponentially. However, we have reached a point in the history of mankind and all great discoveries once acclaimed as human achievements have started a new painful chapter of warming globe and changing climate for new generations to deal with. It is a great challenge of our time, but new generation can take this challenge and convert them into opportunities. The past lessons can show them a new clean and sustainable pathway while dealing with ever increasing population growth.

The challenge for the new generation is to curtail and eliminate Carbon pollution completely while meeting the energy demand in a time bound manner because we are running out of time. Currently renewable energy generation is too low to meet these challenges within the time frame to avert disastrous consequences scientists predict. Renewable Hydrogen is a potential substitute for fossil fuel to eliminate Carbon pollution but that will not solve our current problem soon because renewable energy generation is too small and too slow while our energy demand is huge. Battery technology is only a storage technology and without a base load power generation all other forms of technologies will not meet our current challenges. I am not discounting the potential of renewable energy and its critical role in the future energy mix but that alone will not solve the current crisis. Hydrogen is a weak and unstable atom and it requires a backbone such as Carbon. That is why Hydrogen do not exist in a free state in Nature, but it exists in the form of water or natural gas. Therefore, it is only logical to convert renewable hydrogen into renewable natural gas so that it can be used as a fuel as we have been using for decades. It does not require to create a special type of infrastructure such as required for Hydrogen or any storage technologies.

Our focus should be to achieve Zero Carbon emission in the shortest time scale possible while generating a base load power of 24 x7 using a renewable energy source. It looks like a daunting task but, it is not too big a challenge to overcome. In fact, the technologies are already available, and we are almost there to achieve the above, but governments should understand the challenge and its gravity and extend all the support it requires. Government around the world should implement the following with great urgency to achieve the above objectives.

1.Tax Carbon with immediate effect and minimum tax should be $500/ Mt of CO2 emitted. It should be centrally monitored by government agencies with appropriate technology implementations.

  1. Encourage Oxy combustion technologies for coal, oil and gas-based power plants with incentives to eliminate emissions pollution and reduce the cost of Carbon capture.
  2. Encourage large scale deployment of super critical Carbon dioxide power generation technologies with liberal grants and low interest loans for research and development of super critical CO2 technologies using Brayton cycle using fossil fuels with Zero Carbon emission.

4.Encourage large scale deployment of SNG plants using CO2 and renewable Hydrogen.

By using the above steps all fossil fuel-based power plants existing and operating can be converted and continue to generate base load power 24 x7 with Zero Carbon Emission within a time frame. Simultaneously it will generate large scale renewable hydrogen and renewable synthetic natural gas which can generate base load power with Zero Carbon emission. Such Zero emission power plants can then power all electric and fuel cell cars and eliminate Carbon pollution completely from our roads. The above implementation will create millions of jobs worldwide!

The greatest advantage of these technologies is to recycle Carbon indefinitely while generating power using renewable natural gas with Zero Carbon emission and fresh fossil fuel usage will be gradually eliminated from our planet earth.

 

There is a growing concern among the nations in the world about the changing climate due to greenhouse gas emissions (GHG) and the natural disasters associated with them such as loss of human lives and billions of dollars’ worth of damages in assets. Yet there is no political will or consensus among the largest emitters of CO2 on Carbon emissions at the peril of their own economy and the rest of the world. Paris agreement remains on paper, but largest emitters are either moving away from such an agreement or they continue to emit CO2 without any regard to their agreement. Unfortunately, such a situation has risen due to a scepticism among the public and politicians about the relationship between greenhouse gas emissions and climate change. They believe science has failed to establish a clear evidence between GHG emissions and climate change. Secondly there is a fear among the public and politicians that complete elimination of CO2 will be a prohibitively expensive exercise and such expenses will be eventually passed on to the consumer and such a move will make the governments in power unpopular and it is a risk and they may lose their future elections as a government. Some countries such as US, Australia and many EU countries believe elimination of CO2 completely will lead to job losses and lead to closure of industries such as automobiles, coal mines, steel plants, cement plants and make the government unpopular. All these notions are based on an erroneous belief that it is impossible to eliminate man made CO2 emissions from earth without compromising an economic growth or risking high energy bills.

CO2 emissions can be eliminated by simply converting them back into a fuel using renewable Hydrogen. For example, CO2 emissions by using natural gas such as combined cycle or cogeneration/ trigeneration plants can be recovered and converted back into SNG using renewable Hydrogen so that natural gas can be substituted with SNG. Such substitution will spur the growth of renewable energy industries such as solar, wind, geothermal and biogas in a big time while fossil fuel industries can continue their operations with Zero Carbon emissions.

But this will be practically possible only if renewable hydrogen industry is suitably rewarded while penalties are levied against CO2 emitters. The market will take care of the rest of the issues and government can stay away from the politics of Carbon and allow industries to address GHG emission problems. Currently the cost of recovering CO2 from polluting plants is about US$ 75/Mt and therefore Government should tax polluters at least at the rate of US$ 100/Mt and pass it on to renewable Hydrogen generators @ US$ 100 /Mt of CO2 eliminated as an incentive.

It will lead to a healthy and robust industrial growth, large scale employment and guaranteed sustainability. It will completely eliminate the necessity to store energy. At the same time, it can also help create alternative energy technologies such as batteries and Fuel cell etc and eliminate CO2 emissions from transportation.  Renewable Hydrogen can supply energy sustainably and there will be no need for mining coal or exploring oil and gas to manufacture Nitrogenous fertilizers. Petrochemical industries too can continue their operations without CO2 emissions. The only requirement will be to design a plant for a pre or post combustion CO2 recovery and Oxy-combustion technology for fossil fuels.

#tax Carbon emissions

# renewable Hydrogen

# Zero Carbon emission

 

CRT Carbon Recycling Technology known as “Ramana Cycle” is a new patented concept and system that addresses current problems faced by energy industries with a single solution.

Current problems:

1.Renewable energy is only a fraction of total energy generated world-wide. Fossil fuel especially natural gas in the cleanest and most widely accepted fuel for base load power generation. However, it emits CO2 a greenhouse gas causing climate change.

  1. Electric and Fuel cell cars can eliminate Carbon emission from our roads, but it will dramatically increase the electricity requirement which cannot be met by renewable energy sources alone. Eventually the electricity demand will have to be met by fossil fuels which will sharply increase CO2 emissions in a short span of time thus exacerbating global warming.

3.Grid connected renewable energy has many problems due to intermittent nature of renewable energy such as synchronicity, electronic interface with HT lines, metering etc. There is at least 22% loss while transmitting renewable energy into the grid creating dispatchability issues. Power is transmitted 24 x 7 on HT lines.

Solution:

CRT addresses all the above issue with a single solution as described below.

CRT synthesizes a synthetic fuel CH4, a Hydrocarbon known as SNG (synthetic natural gas) using Carbon from CO2 emissions of gas based power plants and renewable Hydrogen generated using renewable energy sources such as Hydro/solar/wind /biomass/geothermal etc. Once SNG is generated then it can substitute natural gas currently used in power generation. It means one can generate their own SNG and need not depend on oil and gas industries and use conventional gas turbine and generate base load power and transmit using existing transmission lines. This power can be used by electric as well by Fuel cell cars. There will be a net Zero Carbon emission. Additionally the system can supply Hydrogen to Fuel cell cars as an option.

CRT can be implemented using existing systems supplied by internationally known companies with proven technologies and systems. There are absolutely no commercial risks whatsoever. These systems can be deployed immediately, and they are commercial ready.

Each plant is designed specifically based on the capacity, location and purpose. This technology is the first of its kind in the world and it can end the Carbon emission from power plants as well as from automobile industry for good. CRT flow diagram

 

 

 

 

 

CRT flow diagramIt is now possible to convert your CO2 emissions from gas fired power plants into synthetic fuel thanks to cheap solar energy! Once you convert into synthetic fuel then you can recycle it so that your industries can power for good. It is a great way of storing your solar energy into a readily deployable fuel source. By generating heat and power from the synthetic fuel the industries can reap enormous economic benefits while achieving Zero Carbon emission. It is a win situation for people, environment and the governments around the world.

CEWT can demonstrate such a system to potential customers who are currently generating power using natural gas. If you are running a Caustic soda plant where you get Hydrogen as a by-product we can use that Hydrogen and generate additional Hydrogen by installing PV solar panels so that the CO2 emissions from your power plant can be converted back into synthetic fuel. That mean you can generate your own fuel and power at fraction of a cost while achieving Zero Carbon emission. You can even run your fuel cell car from the above Hydrogen. You may be eligible even for Carbon credit for curtailing the Carbon emission from your power plant.

When we started blogging about this technology 7 years back the same idea was not entertained by financial institutions and governments. Thanks to the awareness of climate change and Carbon pollution created by 190 countries who signed the Paris agreement. Though many countries agreed to cut their Carbon emission they could not fulfil their obligations under the treaty for various reasons. The emissions have gone up in 2016.

CEWT can undertake this CRT Carbon recycling technology (patent pending) in countries like India and China where Carbon pollution is rampant and energy demand is increasing at the fastest rate in the world. The cost of solar energy in India has come down substantially thanks to the aggressive promotion of solar industry by Government of India.

CRT is an ideal technology for caustic soda plants to reduce their power consumption and to convert their Carbon emission into a synthetic fuel. It is much easier for them to use their Hydrogen one of the by-products of the industry and they can easily supplement with Hydrogen generated from solar power. By using CRT caustic soda plants can reduce their cost of production by energy efficiency, obtain Carbon credit for Carbon reduction and achieve and price stability for their products.

We can demonstrate the technology by installing a model plant in your country and show case many possibilities. It is the beginning for a Carbon free energy of the future and great potential for Hydrogen cars and to eliminate Carbon pollution that is chocking New Delhi and Beijing.

www.clean-energy-water-tech.com

courtesy : Hydrogenics

Renewable Hydrogen usage

The technology towards zero Carbon emissions from transportation has gained importance due to increasing air pollution from automobiles. It is not just the Carbon emission but oxides of Nitrogen and Sulphur, but also water vapour (more potent Greenhouse gas) to gather with particulate matters that compounds the emission problems.

Current automobiles based on Internal combustion is not only energy inefficient but generates noise and air pollution. Therefore, battery cars and Hydrogen cars are increasing in popularity and competing with each other. We can examine the merits and demerits of these two technology for a better understanding.

Transportation uses mechanical energy derived from thermal energy generated by combustion of fossil fuels but battery cars as well as hydrogen cars convert an electrochemical energy into mechanical energy. As we know energy can neither be created not destroyed but can be converted from one form to another form. The word “energy storage” is a misnomer because electrical energy is generated at the point of usage from stored chemicals by way of redox reactions. In both cases, we generate electrical energy from batteries or from Hydrogen through Fuel cell and then convert it into mechanical energy. Both battery as well as Fuel cell convert chemical energy into electrical energy by electrochemical reaction namely redox reactions. For a redox reaction, we need both reduction (reductant) and oxidation (oxidant) reactions to take place simultaneously to effect flow of electrons from corresponding ions which we call electricity. It is clear from the above we need two reactants namely reductant and oxidant. In batteries both the reactant and oxidant are stored in solid form or in a liquid form in ‘flow batteries’. The chemistry of the redox reaction will determine the speed, size and the life of the battery. This creates a constraint on the size, weight and life of the battery to achieve a specific mileage. It means battery has a limitation when comes to size, life and mileage to be achieved. Tesla is currently leading the way in batteries both for stationery as well as transport applications. For stationery applications the space, weight and life may not be a big constraint but the life is a constraint and therefore the cost.

But in transport applications all the above three parameters are critical and therefore battery may not be a long-term solution. In Hydrogen Cars Hydrogen gas is stored in a compressed form at high pressure in a cylinder. There is no Oxygen storage but only air is used as the Oxidant. Fuel cell uses both Hydrogen and Oxygen to generate electrical energy at the point of usage to run the motor. Electricity is not stored. The main difference between battery and fuel cell is, battery carries both Oxidant as well as reductant on board in solid form which weighs and occupies space; Fuel cell carries only Hydrogen as the reductant in gaseous form and not Oxidant. Hydrogen is a light weight and only the storage tank in the form of composite material is the actual weight. Moreover, there is more room to store Hydrogen like a Hydrogen bus which carries cylinders at the roof top. If we use renewable energy source such as solar and wind then Hydrogen generation and dispensing will not be a serious constraint for Hydrogen generation and distribution in the future. The biggest disadvantage with Fuel cell is the cost due to expensive catalyst such as Platinum.

Each technology has its own advantages and disadvantages but the fundamental facts of these technologies will give us a glimpse of the future potential. In battery technology storing the reactants in solid form is an issue. Air metal battery has a good potential yet a long way to go. Similarly, if Hydrogen can be generated at the point of usage without storing Hydrogen on board that will open a greater potential. There may a hybrid solution in the future that can integrates both battery and Hydrogen- Fuel cell technologies will be the way forward. Research is being carried out to design a rechargeable Fuel cell battery with enhanced performance and cyclability. Such technologies will also guarantee a clean renewable energy storage technologies for stationery applications in the future. Hydrogen can be derived from many abundant natural sources such as seawater as I have explained in my previous article “CAPZ desalination technology uses only sun, sea and wind”.Toyota mirai power supplyToyota mirai layout

Many people argue that Hydrogen is not an energy source but an energy carrier. Hydrogen is certainly an energy source by itself but is to be derived from other primary sources such as water or natural gas because Hydrogen is not available in a free form. Generation of Hydrogen from its sources require an additional energy but when such an energy is provided by renewable sources such as sun, wind and sea then the cost becomes secondary in the long run. Therefore, battery may not be able to compete with hydrogen in the long run though it provides a temporary solution to pressing power problems in short term. Moreover, batteries rely on materials like Lithium whose availability is limited even though they are recyclable.

CAPZ (Clean water at affordable price with zero discharge) is a new desalination concept that separates seawater into fresh drinking water and industrial salt both simultaneously using only sun and wind power. Seawater is nothing but fresh water in abundance with valuable mineral salts dissolved in it. These minerals include Sodium, Potassium, Lithium and Magnesium and a host of other minerals in traces. It requires a holistic approach to separate them in their pure form along with fresh water for potable and industrial applications. CAPZ technology precisely attempts to do that so that the seawater intake can be put into huge economic usage while reducing or eliminating completely the discharge of highly saline effluent contaminated with chemicals back into the sea. With increasing demand for fresh water and depleting sources of fresh water due to natural and man-made causes , sea water has become an important source for fresh drinking water. Sea water is not only a source of fresh water but also a new source of clean Hydrogen an energy of the future. It requires only sun ,sea and wind to achieve this!

CAPZ application

There is likely to be a dramatic change in energy landscape with introduction of super critical CO2 power cycle. It not only increases the power efficiency, reduces the foot print considerably, utilizes part of CO2 emission internally in the form of super critical fluid and open a new path to eliminate Carbon emission completely (zero Carbon emission). It also reduces the water consumption in power generation unlike current conventional Rankine cycle power plants. We will soon be able to continue to generate base load power using fossil fuels with zero carbon emission. Unlike Carbon capture and sequestration already tried unsuccessfully in many parts of the world, Carbon capture and recycle will open a new chapter in the history of power generation. By capturing carbon in a solid form with potential industrial applications such a possibility is now within our reach. It means utilization of existing fossil fuel based power generation infrastructure without any Carbon emission and continue to generate continuous power to meet the increasing demand at a reasonable cost. The current focus on renewable energy will continue but until a practical and viable energy and mature storage technology is developed the renewable energy will have uncertainties. Whatever may be the case the overall cost of energy is likely to go up.

Introduction of Oxy combustion in natural gas turbine has eliminated the oxides of Nitrogen from flue gas thus facilitating separation of CO2 from water and recycling water vapour into combustion process. The condensate from gas turbine is a by-product. Despite the usage of CO2 in the form of super critical fluid there is still an excess CO2 to be disposed of.

A conceptual design to capture CO2 and convert them into SNG while generating additional power using the superheated steam obtained as a by-product of methanation has created a new opportunity to achieve zero carbon emission.

It is an exciting development and our company is now in an advanced stage of developing and commercializing such a technology.

Our new reformation process of natural gas using the captured CO2 and steam allows to precipitate Carbon in a solid form. The chemistry of the process can be explained by the following final methanation process using a proprietary catalyst involving few steps.oxy-fuel-directly-heated-sco2-power-cycle-flow-diagram-1sco2-power-cycle

3CH4 +CO2 +H2O ——–> 2CH4 + 3 H2O + 2 C which will take a final form as follows:

CH4 + CO2 ——> 2H2O + 2C

The superheated steam generated in the process can be exported to generate additional power while the condensate water can be exported and recycled. By using an excess of natural gas the captured CO2 is converted into SNG (synthetic natural gas) which can be recycled into the gas turbine thus achieving a zero-carbon emission while continuing to generate base load power. Such a technology can easily be integrated with other sources of energy such as solar, biomass, waste heat and nuclear.

 

 

Carbon emission is a matter of great concern to all the countries around the world due to the global warming and climate change. After the Paris talks many countries are genuinely trying to reduce their emissions either by switching over to renewable energy or cutting down their emissions by reducing their Carbon footprint. In their desperate measure to reduce Carbon emissions some countries like Canada are trying to accelerate carbon emission reduction by promoting innovation technologies with millions of dollars of grant money. Recent fires in the state of Alberta, rich in oil sand deposits have opened the eyes of the world to witness how a disaster can unfold so quickly and   thousands of people to be evacuated in a short notice. Many fled their homes leaving behind their valuables and memories. It was one of the worst fire disasters in recent memory. Canada especially the state of Alberta is now all the more determined to avert such incidents in the future but also equally determined to reduce their Carbon emissions. The fire is due to dry conditions due to global warming and accelerated by oil sands. It is a perfect recipe for a disaster.

Many countries have switched over from coal to natural gas as a cleaner fuel to reduce their Carbon emission. Natural gas emits less CO2 compared to coal. But does it help combat global warming? One has to compare the two different fuels and their combustion by the following reactions:

C + O2 —->  CO2

CH4 + 2O2 ——>  CO2 + 2H2O

Combustion of coal requires less Oxygen (air) when compared to combustion of natural gas which requires twice the volume of Oxygen (air). Coal combustion emits oxides of Nitrogen and Sulphur apart from CO2 and a minor quantity of water vapour and particulate matters. Combustion of natural gas releases twice the volume of water vapour apart from oxides of Nitrogen and sulphur.

Recent findings by NASA confirms that water vapour is the major greenhouse gas apart from CO2 that is responsible for warming globe and the climate change. Therefore, natural gas does not help combating global warming and climate change.

The following excerpts from NASA highlights this fact

Water Vapour Confirmed as Major Player in Climate Change

Credit: NASA

The distribution of atmospheric water vapour, a significant greenhouse gas, varies across the globe. During the summer and fall of 2005, this visualization shows that most vapour collects at tropical latitudes, particularly over south Asia, where monsoon thunderstorms swept the gas some 2 miles above the land.

Water vapour is known to be Earth’s most abundant greenhouse gas, but the extent of its contribution to global warming has been debated. Using recent NASA satellite data, researchers have estimated more precisely than ever the heat-trapping effect of water in the air, validating the role of the gas as a critical component of climate change. Andrew Dressler and colleagues from Texas A&M University in College Station confirmed that the heat-amplifying effect of water vapour is potent enough to double the climate warming caused by increased levels of carbon dioxide in the atmosphere.
With new observations, the scientists confirmed experimentally what existing climate models had anticipated theoretically. The research team used novel data from the Atmospheric Infrared Sounder (AIRS) on NASA’s Aqua satellite to measure precisely the humidity throughout the lowest 10 miles of the atmosphere. That information was combined with global observations of shifts in temperature, allowing researchers to build a comprehensive picture of the interplay between water vapour, carbon dioxide, and other atmosphere-warming gases. The NASA-funded research was published recently in the American Geophysical Union’s Geophysical Research Letters.

AIRS is the first instrument to distinguish differences in the amount of water vapour at all altitudes within the troposphere. Using data from AIRS, the team observed how atmospheric water vapour reacted to shifts in surface temperatures between 2003 and 2008. By determining how humidity changed with surface temperature, the team could compute the average global strength of the water vapour feedback.

“This new data set shows that as surface temperature increases, so does atmospheric humidity,” Dressler said. “Dumping greenhouse gases into the atmosphere makes the atmosphere more humid. And since water vapour is itself a greenhouse gas, the increase in humidity amplifies the warming from carbon dioxide.” Specifically, the team found that if Earth warms 1.8 degrees Fahrenheit, the associated increase in water vapour will trap an extra 2 Watts of energy per square meter (about 11square feet)
“That number may not sound like much, but add up all of that energy over the entire Earth surface and you find that water vapour is trapping a lot of energy,” Dressler said. “We now think the water vapour feedback is extraordinarily strong, capable of doubling the warming due to carbon dioxide alone.”
Because the new precise observations agree with existing assessments of water vapour’s impact, researchers are more confident than ever in model predictions that Earth’s leading greenhouse gas will contribute to a temperature rise of a few degrees by the end of the century.

The amount water vapour released by burning natural gas is twice the volume of natural gas burnt. A plant using 10,000 m3/day natural gas can release 20,000m3/day water vapour that can be recovered. In fact, if the Gulf countries can recover water from exhaust of their gas fired power plants they may not require any water by desalination of seawater at all. Current consumption of natural gas world-wide exceeds 3.5 trillion cubic meters which roughly translates to 7 trillion cubic meters of water vapour into the atmosphere. Such a large volume has a potential to change our climate system.What goes up as water vapor has to condense into water and has to come down ! It will causes flash flooding in many parts of the world which we are now witnessing.The economic loss by such natural disasters will run into several hundreds of billions of dollars in the future.

It is interesting to examine how the state of Alberta is trying to reduce their carbon emissions by promoting innovative technologies. Majority of the proposals are supposed to convert CO2 emissions into “a useful product” so that the emission can be curtailed or reduced. A quick glance on the list of the proposals they have funded so far indicates they will convert CO2 into an industrial chemical such as Methanol or a Fertilizer such as Urea or alkaline chemicals such as bicarbonates and calcium carbonates etc. Can they really solve the problem of carbon emissions by turning them into useful products? The answer is most likely no. It will help capture CO2 at Alberta but it will be released somewhere else where the end products are used.

Water vapor distrubutionClimate variation due to water vapor It will simply shift the problems of Carbon emission from Alberta into some other region of the world. For example, Urea synthesised from captured CO2 will again be released into the atmosphere when Urea is used by farmers. An enzyme in the soil will release the CO2 from Urea into the atmosphere.

The only real solution is to convert captured CO2 back into a fuel such as SNG (synthetic natural gas) so that it can be recycled into the power plant. By this way the CO2 emission will be converted into solid Carbon.

One need not bury CO2 under the ground or emit it into the atmosphere but constantly recycle into SNG so that power plant can generate power continuously without emitting any greenhouse emissions. To do this we need Hydrogen. At present Hydrogen is produced commercially from natural gas but with carbon emission. Other methods of producing Hydrogen without carbon emissions are expensive. But Hydrogen can be generated from natural gas without Carbon emission and it can be used to convert captured CO2 from power plants into SNG. In other words, two greenhouse gases namely CO2 and methane (CH4) will be reacted to generate commercially valuable Carbon nanotube as a main product as shown below. This high temperature reaction can generate superheated steam that can generate power while a valuable solid Carbon is regenerated. Such a process is still in a developmental stage but has a potential to become a commercial reality in the near future.

CH4 + CO2 —>  2C + 2 H2O

In fact, the carbon emission is converted back into a solid Carbon. The Carbon is to return to Carbon to avoid GHG emission (CO2, N2O, NO2 and H2O) that is changing our climate.

The climate is changing and the impact of such a change is felt almost in every sphere of life around the world especially in countries like India.

” Erratic monsoon rain patterns have left crops parched, jeopardizing India’s nearly $370 billion agricultural sector and hundreds of millions of jobs.  Drought conditions are crippling vast swaths of India’s farmland as the country faces its driest monsoon since 2009. With more than 60 percent of India’s agriculture reliant on monsoon rains, farmers are highly vulnerable to changes in rainfall patterns and rising global temperatures, the Indian Council for Research on International Economic Relations found in a report” according to the International Business Times.

The situation in Australia is no different from India, both surrounded by ocean of water yet no water to irrigate or even to drink. Many scientific studies have clearly highlighted the close relationship between warming earth, increasing salinity of seawater and the climate change. But new coal-fired power plants and seawater desalination plants are set up almost every year in these countries. Both greenhouse gas and the increasing salinity of seawater will only contribute to intensify further warming of the earth. There is some awareness about the global warming by GHG (greenhouse gas emission)but there is no awareness about the increasing salinity of seawater. One of the largest desalination plant set up in the state of Victoria in Australia is idle for so many years yet unable to supply water to struggling farmers in the country Victoria. In a way it is a blessing in disguise because it would have otherwise discharged billions of cubic meters of RO concentrate with toxic chemicals into bass strait.

California law requires that any “new or expanded coastal … industrial installation using seawater” must utilize “the best available site, design, technology and mitigation measures feasible … to minimize the intake and mortality of all forms of marine life.” (California Water Code section 13142.5(b)

The following excerpts from NASA highlights the close relationship between

Ocean salinity and changing climate and rainfall.

“Salinity, Ocean Circulation & Climate

 Surface winds drive currents in the upper ocean. Deep below the surface, however, ocean circulation is primarily driven by changes in seawater density, which is determined by salinity and temperature. In some regions such as the North Atlantic near Greenland, cooled high-salinity surface waters can become dense enough to sink to great depths. The ‘Global Conveyor Belt’ visualization (below) shows a simplified model of how this type of circulation would work as an interconnected system.

The ocean stores more heat in the uppermost three (3) meters than the entire atmosphere. Thus density-controlled circulation is key to transporting heat in the ocean and maintaining Earth’s climate. Excess heat associated with the increase in global temperature during the last century is being absorbed and moved by the ocean. In addition, studies suggest that seawater is becoming fresher in high latitudes and tropical areas dominated by rain, while in sub-tropical high evaporation regions, waters are getting saltier. Such changes in the water cycle could significantly impact not only ocean circulation but also the climate in which we live.

‘The Global Conveyer Belt’  (http://science1.nasa.gov/media/medialibrary/2013/05/20/thermohaline_assembled.) represents in a simple way how currents move beneath the wind-driven upper ocean. This movie begins by focusing on the North Atlantic east of Greenland, where cold surface waters get saltier due to evaporation and/or sea ice formation. In this region, surface waters can become dense enough to sink to the ocean depths. This pumping of surface water into the deep ocean forces the deep water to move horizontally until it can find areas where it can rise back to the surface. This very large, slow current — estimated to be on the order of 1000 years to complete a full circuit — is called the thermohaline circulation because it is caused by temperature (thermo) and salinity (haline) variations. Credit: NASA/GSFC

Launched June 10, 2011, aboard the Argentine spacecraft Aquarius/Satélite de Aplicaciones Científicas (SAC)-D, Aquarius is NASA’s first satellite instrument specifically built to study the salt content of ocean surface waters.

Salinity variations, one of the main drivers of ocean circulation, are closely connected with the cycling of freshwater around the planet and provide scientists with valuable information on how the changing global climate is altering global rainfall patterns.

The salinity sensor detects the microwave emissivity of the top 1 to 2 centimetres (about an inch) of ocean water – a physical property that varies depending on temperature and saltiness. The instrument collects data in 386 kilometre-wide (240-mile) swaths in an orbit designed to obtain a complete survey of global salinity of ice-free oceans every seven days.”

According to a new report on desalination in California

Desalination is the removal of salts from saline water (brackish or seawater) using distillation or membrane separation technologies in most cases. Current desalination technologies produce a toxic concentrated brine discharge that contains all the salts and dissolved solids along with process chemicals.

Putting the brine “cocktail” back into the ocean damages the marine environment and runs counter to the environmental goals of the state. The brine creates extensive damage in the ocean in areas sometimes called dead zones. The damage affects the environment, the economy, and the quality of life of the neighbouring areas on land and off shore.

Desalination is receiving increased attention as a means for addressing the water supply challenges of California. The state’s growing population, much of which is located in semi-arid regions, periodic droughts, and other water demands create pressure on existing water supplies and strong incentives to find new ones. (California Desalination Planning Handbook, Dept. of Water Resources, 2008, p.1) With the state’s 3,427 miles of Pacific coastline, (CA Water Plan, 2009, Volume 2, Strategic Resource Management, Chapter 26, Water‐Dependent Recreation. 26‐5) desalination of sea water is a reasonable response to the need for a reliable supply of more potable water—if it can be done without environmental damage.

New desalination technologies exist that produce no brine (and no concentrated brine cocktails). They should be chosen as best available technology (BAT) in the future.

The California report says:

“Consequences of all aspects combined

The brine cocktail damages many life forms – plant and animal; adults, larvae, and eggs. It kills some outright. It prevents reproduction for some. It impedes growth and thriving for some. And the damage can happen at only slightly elevated levels of concentration.

The hypoxic brine and chemical mixture is like plastic wrap suffocating the organisms living on the sea floor. Fish can swim away to better water conditions. Plants, eggs, larvae, and stationery or slow-moving animals like coral, clams, and crabs cannot.

In a comprehensive review of published studies about the impacts of desalination plant discharges, David A Roberts and team reviewed 8 field studies and 10 laboratory experiments that examined a range of salinities and a variety of organisms from waters in the US and Spain. They concluded that experiments in the field and laboratory clearly demonstrate the potential for acute and chronic toxicity, and small-scale alterations to community structure following exposures to environmentally realistic concentrations of desalination brines.

The observed effects of the tests in the study mentioned above included fertilization, germination, growth and development, and mortality on seven organisms. The study was focused on the effects of several brine concentrations and used brine prepared in the laboratory or taken from an RO plant discharge.

It did not look at the effects of the chemical additives or exposure over long terms. Even so, it found effects over limited time periods on several species at some state of development and varying concentrations. For many marine invertebrates the larvae are especially susceptible to brine concentrations.”

Both energy and water are increasing in demand as the population grows and it is critical to choose the right type of technology to sustain such a growth. Wrong choices made due to popularity or quick fixes will lead to long-term consequences.   Desalination with zero liquid discharge should be a mandatory so that large multinational companies will at least spend some funds on R&D towards achieving such a goal. Otherwise it will continue to be a “business as usual”.

 

 

%d bloggers like this: