Skip navigation

Category Archives: Oil imports

When Carbon emission is high and the globe is warming due to such emissions then the simple and immediate solution to address this issue is to convert Carbon into Hydrocarbon, and the simplest Hydrocarbon is Methane (CH4).By simply introducing Hydrogen atom into Carbon atom the entire fuel property changes. For example the heating value of coal is only 5000-6500 kcal/kg at the maximum while the heating value of Methane (natural gas) increases to 9500 kcal/m3 by the above conversion. It means the same power generated by coal can be generated by using almost half the quantity of natural gas. Converting Carbon into substituted natural gas (SNG) is one way of addressing climate change in a short span of time. By switching over the SNG from coal will cut the CO2 emission almost by 50%.

Global warming due to GHG emission has become a serious environmental issue in recent times and more and more investments are made on renewable energy projects such as solar and wind etc. In spite of the major thrust on renewable energy projects the main source of power is still generated around the world  using fossil fuel especially Coal  due to its abundance and low-cost. Moreover the investment already made on fossil fuel infrastructures are too big to be ignored and investment required to substitute coal-fired power plants by renewable energy are too large and gestation periods are too long to maintain the current electricity demand and to meet the future demands. The cost of renewable energy also is high and there is great resistance by consumers to switch over to renewable energy. Many Governments are reluctant to subsidize renewable energy due to their financial constraints. That is why countries like China which is growing at the rate of more than 8% pa are trying to decrease the ‘Carbon intensity’ rather than closing down the coal–fired power plants by setting up SNG (synthetic natural gas) plants by gasification of  coal . This will cut their Carbon emissions almost by 50% surpassing all other countries around the world in short span of time, thus meeting their emission targets agreed in “Kyoto protocol”. They can also meet the increasing electricity demand by using “syngas” generated by coal gasification plants, while reducing the Carbon pollution. They will also be able to produce Diesel and Gasoline from coal similar to the “SESOL” plant in South Africa which is already operating successfully for the past 50 years.

“Leveraging Natural Gas to Reduce Greenhouse Gas Emissions” – a summary report by Center for Energy and Climate Solutions (C2ES) have highlighted the following in their report.

“Recent technological advances have unleashed a boom in U.S. natural gas production, with expanded supplies and substantially lower prices projected well into the future. Because combusting natural gas yields fewer greenhouse gas emissions than coal or petroleum, the expanded use of natural gas offers significant opportunities to help address global climate change.

The substitution of gas for coal in the power sector, for example, has contributed to a recent decline in U.S. greenhouse gas emissions. Natural gas, however, is not carbon-free. Apart from the emissions released by its combustion, natural gas is composed primarily of methane (CH4), a potent greenhouse gas, and the direct release of methane during production, transmission, and distribution may offset some of the potential climate benefits of its expanded use across the economy.

This report explores the opportunities and challenges in leveraging the natural gas boom to achieve further reductions in U.S. greenhouse gas emissions. Examining the implications of expanded use in key sectors of the economy, it recommends policies and actions needed to maximize climate benefits of natural gas use in power generation, buildings, manufacturing, and transportation. More broadly, the report draws the following conclusions:

•The expanded use of natural gas—as a replacement for coal and petroleum—can help our  efforts to cut greenhouse gas emissions in the near to mid-term, even as the economy grows. In 2013, energy sector emissions are at the lowest levels since 1994, in part because of the substitution of natural gas for other fossil fuels, particularly coal. Total U.S. emissions are not expected to reach 2005 levels again until sometime after 2040.

• Substitution of natural gas for other fossil fuels cannot be the sole basis for long-term U.S. efforts to address climate change because natural gas is a fossil fuel and its combustion emits greenhouse gases. To avoid dangerous climate change, greater reductions will be necessary than natural gas alone can provide. Ensuring that low-carbon investment dramatically expands must be a priority. Zero-emission sources of energy, such as wind, nuclear and solar, are critical, as are the use of carbon capture-and-storage technologies at fossil fuel plants and continued improvements in energy efficiency.

• Along with substituting natural gas for other fossil fuels, direct releases of methane into the atmosphere must be minimized. It is important to better understand and more accurately measure the greenhouse gas emissions from natural gas production and use in order to achieve emissions reductions along the entire natural gas value chain.”

Countries like India should emulate the Chinese model and become self-sufficient in meeting their growing energy demand without relying completely on imported Petroleum products. Import of petroleum products is the single largest foreign exchange drain for India, restricting their economic growth to less than 5%. Countries that rely completely on coal-fired power plants can set up coal hydro-gasification and gasification plants to cut their Carbon emissions in the immediate future while setting up renewable energy projects as a long-term solution.

Transiting Carbon economy into Hydrogen economy is a bumpy road and it will not be  easy to achieve in a short span of time. The logical path for such transition will be to switch coal based power generation into gas based power generation for the following reasons.

The largest Carbon emissions are from power generation and transportation. Transportation industry is already going through a transition from fossil fuel to Hydrogen. More future cars will be based either on Fuel cell or Electric and in both cases the fuel is the critical issue. Battery technology also will be an issue for Electric cars. It is more practical to generate Hydrogen from natural gas and to set up Hydrogen fuel stations than generating Hydrogen from solar-powered water electrolysis. With improvement on Fuel cell technology it is more likely that PEM Fuel cell may be able to operate on Hydrogen derived from natural gas that is completely free from any Sulphur compounds. Even for Electric cars, natural gas will play an important role as a fuel for power generation and distribution in the near future as we transit from Carbon economy to  full-fledged Hydrogen economy.

Countries like India with highest economic growth will have to be pragmatic by setting up more SNG plants with indigenous coal than depending on imported LNG. India has only two LNG terminals now in operation but do not have gas transmission infrastructure. With increasing demand for natural gas from all over the world and lack of LNG receiving terminals, India will have to face a serious fuel and power shortage in the future. By installing more coal gasification and SNG plants with down-stream products like Diesel and petrol, India can overcome the fuel and power shortage. In fact India set up the first coal gasification and Ammonia and Urea plant in Neyveli (Neyveli Lignite Corporation) way back in Fifties after her independence and it is time to visit the past.

Renewable energy is certainly the long-term solution for energy demand but we have to consider the amount of GHG emission associated with production PV solar panels, wind turbines and batteries. There is no easy fix to cut GHG emission in short span of time but switching Carbon to hydrocarbon will certainly reduce the emissions scientists are advocating and water (steam) is the key to introduce such Hydrogen atom into the Carbon atom. That is why we always believe “Water and Energy are two sides of the same coin” and renewable Hydrogen will be the key to our future energy.

For more information on the above topic please refer to the following link:

Source: Harvard University

Link: Coal to Natural gas Fuel switching and Carbon dioxide (CO2) emission reduction.

Date: Apr 2011.

Author: Jackson Salovaara.

The science and technology of Bioethanol production from starch or sugar is  well-established. Brazil leads the world in Bioethanol production with a capacity of 16,500 million liters/yr followed by US with a capacity of 16,230 million liters/yr.India produces merely 300 million liters/yr as the fifth largest producer in the world.US consumes about 873 MM gallons of oil/day of which about 58% is imported. The US forecast for 2025 import of oil is 870MMgal/day and the President wants to replace imported oil from the Middle East by 75% -100MMgal/day. (Ref: Environmental Protection Agency,Cincinnati,Ohio).

Currently bulk of the Bioethanol is produced in centralized plants. This is because an economical plant requires a production rate of 40-55 MMgal /day. Transportation of raw materials to long distance is uneconomical. Countries like India can substantially increase their sugar production and encourage small-scale distilleries for the sole purpose of replacing imported oil. Large scale Bioetehanol production involves fermentation of molasses; a byproduct of sugar industry.Bioethanol can also be produced directly from cane sugar juice or from starch such as Corn or Tapioca.

Molasses is diluted with water and inoculated by addition of yeast and other nutrients. The fermentation takes about 24 to 30 hours till the fermented broth has an alcohol content of 7.5 to 9.5% by volume. The fermented wash is then distilled in a separate distillation column. This alcohol which is 95-96% is known as rectified spirit. The rectified spirit is further passed though a Molecular sieve to remove moisture and to concentrate alcohol to 99.8% by volume. A spent wash of about 8 lits are generated per liters of Bioethanol.The spent wash will have a BOD (biological oxygen demand) value of  45,000ppm.This can be subject to Anaerobic digestion to generate ‘Bio  gas’ with about 55% Methane value and the liquid BOD will be reduced to less than 5000ppm. This Biogas can be used to generate power for the process. This process is economical for a production of Bioethanol 40-55MMgal/day.

But in countries like India the sugar cane molasses are available in smaller quantities and the sugar plants are scattered. Small scale distillery can adopt ‘Per-evaporation’ method to concentrate ‘Bioethanol’.The advantage with ‘Perevaporation’ is the process is not limited by thermodynamic vapor-liquid equilibrium. The distilled alcohol with 96% alcohol can be separated by Perevaportion into streams containing Bioethanol 99+% and alcohol depleted water.Perevaporation is a membrane separation process and it serves as an alternative to distillation and molecular sieve and saves energy. The membrane process can be suitably designed for alcohol enrichment as well as dehydration and easily adoptable for smaller production of Bioethanol.

Such process allows production of dehydrated Bioethanol which are suitable to use as a fuel in cars as a Gasoline blend without any engine modification. Production of Bioethanol from cane sugar molasses is cheaper than from corn starch. Countries like India should promote Bioethanol as an alternative fuel to gasoline and cut their oil imports.

%d bloggers like this: