Skip navigation

Category Archives: Solar energy

Energy generation and usage is considered not only as a mark of progress of a nation but also security of a nation. That is why countries go to extraordinary distance to achieve such a security and everything else becomes secondary in the path of their goal. That is why countries with high oil and gas reserves enjoy good relationship and privileges with powerful nations of the world. Countries who do not have their own oil and gas reserves and who completely rely on import of oil and gas have no choice but maintain a good relationship with oil rich countries despite their difference in ideologies and policies. But with warming globe and changing climate the dependence on fossil fuels is fast becoming unsustainable and countries look for alternatives. It is good news for the whole world especially for nations who depend completely on import of oil and gas because they can develop their own renewable energy sources to lower their emissions. But there is one major difference. Countries who depend on import of oil and gas required to develop only an infrastructure to store and distribute oil and gas, But with renewable energy they have to develop an infrastructure to produce the hardware necessary to use alternative energy sources such as solar, wind, geothermal  but also energy storage such as batteries. The warming globe and changing climate have become a grave threat to the plant earth and a threat to lives of entire future generations. It is the greatest challenge of the industrialized world. One can view this as threat or as an opportunity. But it is time to act irrespective of our views and we must act now.

It is an opportunity for scientists and engineers to view energy sources and their applications in a new perspective. It is an opportunity to understand how human activities affect our environment and how not to damage them but preserve them for our future generations while developing new alternatives. Humanity is just a part of a larger environment and any damage to planet earth is at our own peril. It is an ancient wisdom, but we neglected them. When an aboriginal of Australia said “we belong to earth and earth does not belong to us” we failed to listen to them. We(people) became bigger than They (environment).

In pursuit of a new energy source one must be extremely careful in examining Nature and how she operates so that we do not make the same mistakes of the past. As we develop renewable energy as a potential energy source of the future, we should be aware of the life cycle of such a system and their impact on environment. Renewable energy requires hardware that uses exotic metals, catalysts, polymers, new Carbon sources and glasses. As we switch to Carbon free economy, we should make sure that there are no emissions in developing renewable energy sources and if necessary impose Carbon tax on such emissions and, to develop recycling technologies to recycle that hardware safely and environmentally friendly manner. It is critically important issue as we move forward. According to an article published in Chemical engineering News

“The potential quantities of waste are enormous. By 2025, waste batteries removed from electric vehicles will total 95 Giga watt hours, according to an estimate by Bloomberg New Energy Finance. That pile will weigh roughly 600,000 metric tons.

A similar amount of old solar panels will have accumulated by then, according to projections by the International Renewable Energy Agency. IRENA anticipates solar panel waste could reach 78 million metric tons by 2050. And Europe could see 300,000 metric tons per year of decommissioned wind turbine blades in the next two decades, says the trade association Wind Europe.

Each year, approximately 300,000 metric tons of lithium-ion battery waste is generated around the world, says Sheetanshu Upadhyay, an analyst with India’s Esticast Research & Consulting. Most of those batteries come from mobile devices, but that waste will soon be overshadowed by old electric car batteries. Sales of plug-in electric vehicles are expected to surpass 2.6 million in 2020, according to Navigation Research.”

The above data shows the amount of CO2 emission associated with implementation of renewable energy sources soon. There is a potential for large scale recycling industries on renewables, but it will come with a price and environmental issues. Right now, the main problem is the CO2 emission and the only way to tackle this problem is impose Carbon tax on emissions while encouraging industries with low emission technologies. It should be possible for UN to pass a unanimous resolution among the nations to address climate change by imposing Carbon tax uniformly across the nation. By such resolution UN can bring all those countries to the table who are currently reluctant to be a party to the Paris accord. Countries can use “Carbon rating” similar to “energy ratings” currently used for measuring energy efficiencies in appliances such as Heaters and air-conditioners. The lowest emitting technologies will get the highest Carbon rating while high emission technologies will get the lowest Carbon ratings. By using such a method country who are reluctant to act on climate change will be disadvantaged; they will not be able to compete in international market or export their goods to low emitting countries based on Carbon ratings.

 

Recycling PV solar panelsRecycling renewablesRecycling wind turbines

“The method adopted in Vedanta to impart the knowledge of Brahman is known as the method of superimposition (adhyaaropa) and subsequent negation (apavaada). In the Bhashya, Bhagavatpada says, “The transmigrating self is indeed Brahman. He who knows the self as Brahman which is beyond fear becomes Brahman. This is the purport of the whole Upanishad put in a nutshell. It is to bring out this purport that the ideas of creation, maintenance and dissolution of the universe, as well as the ideas of action, its factors and results were superimposed on the Self. Then, by the negation of the superimposed attributes the true nature of Brahman as free from all attributes has been brought out. This is the method of adhyaaropa and apavaada, superimposition and negation, which is adopted by Vedanta.”  (Ref: What are Upanishads? : An over view by S.N. Sastri on Luthur.com)

The analogy that is often used to describe the process of superimposition and negation is that of ‘using a thorn to remove a thorn’. Finally, when the last thorn is removed, the thorn used to remove it is thrown away as well. Similarly, Carbon can be used to reduce carbon emission while power is generated!

Let us consider the issues of Carbon emission and global warming resulting in climate change in the above context. Recent conference in Climate change held in Paris is acclaimed to be a success to the planet earth collectively adopted by 195 countries both developed and developing. In a nutshell they all have agreed to reduce their carbon emissions to limit the global warming to less than 2C or even 1.5 between 2030 and 2050. Is it really practical to achieve the above target given the nature of reduction and the complexity of imposing such a reduction within the time frame? It is a big question mark.

The only practical method to reduce CO2 is by using Hydrogen CO2 + H2-à CO + H2O and then convert CO into a useful product such as Urea NH2CONH2 a fertilizer. Production of Urea requires additional Hydrogen which is again obtained by combustion of fossil fuel resulting in CO2 emission. Moreover, CO2 will eventually be released at the point of usage of urea later. While trying to reduce Carbon emission one will end up with more Carbon emission in the atmosphere.

The carbon emission from power plants can be substituted with renewable energy sources such as wind and solar at a very high cost but how the emissions from chemical plants such as urea or from automobile emissions, steel plants and cement plants be contained? We should also remember that silicon wafer to produce solar panels consume large amount of power which now comes invariably from fossil fuels. There is a long list of such plants emitting Carbon every day from all over the world.

But there is a possibility to reduce emissions substantially by converting CO2 emissions from power plants into a synthetic fuel which can then substitute fossil fuel to continue power generation. The CO2 resulting from combustion of synthetic fuel will be recycled in the same manner mentioned above thus completing a cycle. To convert CO2 into a synthetic fuel we will require Hydrogen either by renewable sources or non-renewable sources. The non-renewable sources for Hydrogen cannot be a long term solution but renewable Hydrogen is very expensive at this stage. Therefore, Hydrogen is the only source which will not only help reduce Carbon emissions but also help eliminate Carbon completely from planet earth. Renewable Hydrogen is the key to decarbonize the planet earth. However, it may be possible to decarbonize the planet temporarily by using Hydrogen derived from fossil fuel without emitting CO2! It is not just a theory but practical because the technology has already been tested! In this process the Carbon will remain in the loop where it will neither be buried nor emitted into the atmosphere but constantly recycled.

 

 

%d bloggers like this: