Skip navigation

Category Archives: Sustinability

We live in a carbon constrained world where carbon emission is considered as the biggest challenge of the twenty-first century. We unearthed fossil fuel which Nature buried for millions of years and burnt them for our advantage to generate power and to run our cars. Scientist pointed out that the unabated emission of greenhouse will cause the globe to warm with dire consequences. However this came as an ‘inconvenient truth’ to industries and Governments around the world. The economic consequences of stopping fossil fuels weighted more than the global warming. Governments were in a precarious situation and unable to take a concrete policy decision. Popular Governments were not willing to risk their power by taking ethical decisions and opted for popular decision to keep up their growth. Then the financial crisis became an issue, which has nothing to do with greenhouse emission or global warming. Yet, the economic and industrial growth stumbled in many developed countries and unemployment skyrocketed. Governments are caught in a situation where they need to take a balanced view between an ethical decision and economic decisison.The overwhelming evidence of global warming and their consequences are slowly felt by countries around the world by natural disasters of various sizes and intensities.

Some scientist suggested that there is nothing wrong using fossil fuels; we can continue with greenhouse emission without risking the economic growth by  capturing  the carbon emission and burying  them underground. Carbon sequestration and clean coal technologies became popular and more funds were allocated to them than renewable energy development.Countires like India and China are not in a hurry to discontinue fossil fuels but continue to make massive investments on coal-fired power plants. They neither tried to capture carbon nor bury them, but continue to emit carbon claiming that it is their turn of economic growth and right to emit carbon emission. The chief of UN panel on climate change headed by an Indian has no sayin the matter.Politicians push scientists into the background when the truth is inconvenient to them.

How feasible in the carbon sequestration technology and what is the cost? Even if we can come up with a successful technology of capturing carbon and burying them underground, there will be a cost involved. This cost will invariably be passed on to the consumer which  will  eventually increase the cost of energy. Constraining carbon emission without incurring a cost can only be a dream. Capturing carbon emission is nothing new; Carbon dioxide is absorbed by solvents like MEA (Monoethanolamine) in many chemical industries. The absorbed carbon dioxide can be stripped free of solvent and the solvent can be recycled. This carbon dioxide can be treated with Ammonia to get Urea, a Fertilizer. But the source of Hydrogen can come only from renewable energy sources. That is why ‘Renewable Hydrogen ‘is the key to solve global warming problem. We can produce Urea from “captured Carbon” and ‘Renewable Hydrogen’ so that we can cut a real quantity of greenhouse emission. Carbon recycling is a sustainable solution than Carbon capturing and burying. Countries like India who depend upon import of Urea for their agriculture production should immediately make Carbon recycling into Urea production mandatory. It is a win situation for everybody in the world.

There is so much discussion about Hydrogen as a source of clean energy because, it is the choice of Nature. Nature has provided us with fossil fuels which are Hydrocarbons, chemically represented by CxHy, Carbon and Hydrogen atoms. In the absence of Hydrogen in a Hydrocarbon, it is nothing but Carbon, which is an inert material. The Hydrocarbon gets its heating value only from the presence Hydrogen atom. The natural gas, now considered as the cleanest form of Hydrocarbon is represented by the chemical formula CH4, containing 25% Hydrogen by weight basis. It represents the largest Carbon to Hydrogen ratio at 1:4.This is the highest in any organic chemicals. In aromatic organic compounds such as Benzene, represented by C6H6, the Hydrogen content is only 7.69%.Even in Sugar which is an organic compound from Nature, represented chemically as C12H22O11 has only 8.27% Hydrogen. But Bioethanol, derived from sugar represented by C2H4OH has almost 11.11% Hydrogen. That is why Ethyl Alcohol known as ‘Bioethanol’ derived from sugar is blended with Gasoline (Hydrocarbon), for using as a fuel in cars in countries like Brazil.

Brazil is the only country that does not depend on imported Gasoline for their cars. The same Bioethanol can also be derived from Corn starch. But the starch should first be converted into sugar before alcohol is derived; that is why it is more expensive to produce Bioethanol from starch than from cane sugar molasses. The climatic conditions of Brazil are more favorable for growing Cane sugar than corn. That is why Brazil is in a more advantageous position than North America, when it comes to Bioethanol. US is one of the largest consumer of Gasoline.US has imported 11.5 million barrels/day of oil in 2010.It has used 138.5 billion gallons of Gasoline (3.30billion barrels) in 2010) according to EIA. (US Energy Information Administration)

It is estimated that Brazil’s sugar based Alcohol is 30% cheaper than US’s corn-based Alcohol. Brazil has successfully substituted Gasoline with locally produced alcohol .They also introduced ‘flexible fuel vehicles’ that can use various blends of Alcohol-Gasoline. Most of the Gasoline used in US has 10% Ethanol blend called E10 and E15, representing the percentage of Alcohol content in Gasoline. Brazil is the largest producers of Bioethanol in the world. Both Brazil and US account for 87.8% of Bioethanol production in the world in 2010 and 87.1% in 2011.Brazil is using Bioethanol blends of various proportions such as E20/E25/E100 (anhydrous alcohol) (Ref: Wikipedia). Almost all cars in Brazil uses Bioethanol blended Gasoline and even 100% anhydrous Bioethanol are used for cars. Brazil has set an example as a ‘sustainable economy introducing alternative fuel’ to the rest of the world. The ‘bagasse’ from cane sugar is also used as a fuel as well in the production of ‘Biogas’, which helps Brazil to meet sustainability on renewable energy and greenhouse gas mitigation.

The above example is a clear demonstration of sustainability because natural organic material such as sugar is the basic building block by which we can build our Sustainable clean energy of the future. The same Bioethnanol can easily be reformed for the production of Hydrogen gas to generate power and run Fuel cell cars. Many companies are trying to use chemicals such as metal Hydrides as a source of Hydrogen. For example, one company successfully demonstrated using Sodium Borohydride for Hydrogen production. Many companies are trying to find alternative sources of Hydrogen generation from water, including Photo-electrolysis using direct solar light and special photo catalyst materials. We know Nature produces sugar by using sun’s light, water and carbon dioxide from air by photosynthetic process. Can man duplicate this natural process and generate Hydrogen at the fraction of the cost by simply using water and sun’s light? The race is already on and only time can tell whether our pursuit for cheap and clean Hydrogen can become a commercial reality or just stay as an elusive dream.

 

 

 

%d bloggers like this: