Skip navigation

Category Archives: wind turbine

There is so much discussion about Hydrogen as a source of clean energy because, it is the choice of Nature. Nature has provided us with fossil fuels which are Hydrocarbons, chemically represented by CxHy, Carbon and Hydrogen atoms. In the absence of Hydrogen in a Hydrocarbon, it is nothing but Carbon, which is an inert material. The Hydrocarbon gets its heating value only from the presence Hydrogen atom. The natural gas, now considered as the cleanest form of Hydrocarbon is represented by the chemical formula CH4, containing 25% Hydrogen by weight basis. It represents the largest Carbon to Hydrogen ratio at 1:4.This is the highest in any organic chemicals. In aromatic organic compounds such as Benzene, represented by C6H6, the Hydrogen content is only 7.69%.Even in Sugar which is an organic compound from Nature, represented chemically as C12H22O11 has only 8.27% Hydrogen. But Bioethanol, derived from sugar represented by C2H5OH has almost 13% Hydrogen.  Ethyl Alcohol known as ‘Bioethanol’ derived from sugar is blended with Gasoline (Hydrocarbon), for using as a fuel in cars in countries like Brazil. Brazil is the only country that does not depend on imported Gasoline for their cars. The same Bioethanol can also be derived from Corn starch. But the starch should first be converted into sugar before alcohol is derived; that is why it is more expensive to produce Bioethanol from starch than from cane sugar molasses. The climatic conditions of Brazil are more favorable for growing Cane sugar than corn.  Brazil is in a more advantageous position than North America, when it comes to Bioethanol. US is one of the largest consumer of Gasoline.US has imported 11.5 million barrels/day of oil in 2010.It has used 138.5 billion gallons of Gasoline (3.30billion barrels) in 2010) according to EIA. (US Energy Information Administration) It is estimated that Brazil’s sugar based Alcohol is 30% cheaper than US’s corn-based Alcohol. Brazil has successfully substituted Gasoline with locally produced alcohol .They also introduced ‘flexible fuel vehicles’ that can use various blends of Alcohol-Gasoline. Most of the Gasoline used in US has 10% Ethanol blend called E10 and E15, representing the percentage of Alcohol content in Gasoline. Brazil is the largest producers of Bioethanol in the world. Both Brazil and US account for 87.8% of Bioethanol production in the world in 2010 and 87.1% in 2011.Brazil is using Bioethanol blends of various proportions such as E20/E25/E100 (anhydrous alcohol) (Ref: Wikipedia). Almost all cars in Brazil use Bioethanol blended Gasoline and even 100% anhydrous Bioethanol are used for cars. Brazil has set an example as a ‘sustainable economy introducing alternative fuel’ to the rest of the world. The ‘bagasse’ from cane sugar is also used as a fuel as well in the production of ‘Biogas’, which helps Brazil to meet sustainability on renewable energy and greenhouse gas mitigation. The above example is a clear demonstration of sustainability because natural organic material such as sugar is the basic building block by which we can build our Sustainable clean energy of the future. The same Bioethnanol can easily be reformed for the production of Hydrogen gas to generate power and run Fuel cell cars. Many companies are trying to use chemicals such as metal Hydrides as a source of Hydrogen. For example, one company successfully demonstrated using Sodium Borohydride for Hydrogen production. Many companies are trying to find alternative sources of Hydrogen generation from water, including Photo-electrolysis using direct solar light and special photo catalyst materials. We know Nature produces sugar by using sun’s light, water and carbon dioxide from air by photosynthetic process. Can man duplicate this natural process and generate Hydrogen at the fraction of the cost by simply using water and sun’s light? The race is already on and only time can tell whether our pursuit for cheap and clean Hydrogen can become a commercial reality or just stay as an elusive dream.

Wind is a potential source of renewable energy, especially for islands with an average wind velocity of 5mts/sec and above. Many islands in pacific ocean  have some common problems like sea erosion, shortage of power and drinking water. These small islands with little population are fully depending on diesel fuel. In fact their life depends on diesel fuel and any increase in price significantly affects their daily life. Their main source of income is only by fishing and they live day to today.

I had a personal experience of visiting a small island off Port Moresby in Papua New Guinea. They call it Dougo Island or ‘Fisherman’s island’ with population of less than 700 people. It is about 4.5km wide and 2km long. It is a coral atoll pushed out of the sea. One can take stroll on the beach and it is one of the most beautiful experiences one can have. It gives a feeling that you are far away from the rest of the world. There is a small abandoned World War II Airfield. The people in the island do not have any electricity or drinking water and most of them are fishing on small boats. Their boats are fuelled by diesel. They will go to nearby city of Port Moresby and sell their fish and with that money they will buy drinking water and diesel in cans and return to the island. This is their daily life.

Such an island is an ideal location to set up a wind turbine and a small sea water desalination plant, that can easily solve their problem of water and power. The trade wind from the Coral Sea in the island of Papua New Guinea blows almost 7-8 months in a year and their wind velocity averages 7 mts/sec. Two wind turbines of each 250 kW capacity and a small seawater desalination SWRO plant of capacity 15,000lts/day will be sufficient to solve their problems. The desalination plant will consume about 4.5Kwhrs/m3 of water generated. About 2000 kwhrs/day of power can be supplied to the village, each family consuming about 2.85 khrs/day for 6 hours/day and also for the desalination plant. The system will generate  a surplus power.

Renewable wind energy is the best option for such islands to generate on-site power and also to desalinate seawater for supply of drinking water. With increasing global warming and sea level rising, these small island face seawater intrusion and inundation. Many islands are slowly disappearing into the vast sea. Moreover, these islands are the most vulnerable to the fluctuating diesels prices and they are walking on a tight rope.Industrialised countries with an average power consumption of several kilowatt-hours per day are crying foul about rising energy cost while people in such small islands barely manage their food and shelter after paying for the diesel.

Recently the Government of Maldives conducted their cabinet ministers meeting under the sea, to showcase their plight due to sea level rise caused by global warming, to the rest of the world. Small islands can cry loud but their voice  is muffled by roaring sea, while rest of the world carries on their business as usual.

%d bloggers like this: