Skip navigation

Tag Archives: Australia

Seawater desalination is a technology that provides drinking water for millions of people around the world. With increasing industrialization and water usage and lack of recycling or reuse, the demand for fresh water is increasing at the fastest rate. Industries such as power plants use bulk of water for cooling purpose and chemical industries use water for their processing. Agriculture is also a major user of water and   countries like India exploit ground water for this purpose. To supplement fresh water, Governments and industries in many parts of the world are now turning to desalinated seawater as a potential source of fresh water. However, desalination of seawater to generate fresh water is an expensive option, due to its large energy usage. However, due to frequent failure of monsoon rains and uncertainties and changing weather pattern due to global warming, seawater desalination is becoming a potential source of fresh water, despite its cost and environmental issues.

Seawater desalination technology has not undergone any major changes during the past three decades. Reverse osmosis is currently the most sought after technology for desalination due to increasing efficiencies of the membranes and energy-saving devices. In spite of all these improvements the biggest problem with desalination technologies is still the rate of recovery of fresh water. The best recovery in SWRO plants is about 50% of the input water. Higher recoveries create other problems such as scaling, higher energy requirements and O&M issues and many suppliers would like to restrict the recoveries to 35%, especially when they have to guarantee the life of membranes and the plant.

Seawater is nothing but fresh water with large quantities of dissolved salts. The concentration of total dissolved salts in seawater is about 35,000mgs/lit. Chemical industries such as Caustic soda and Soda ash plants use salt as the basic raw material. Salt is the backbone of chemical industries and number of downstream chemicals are manufactured from salt. Seawater is the major source of salt and most of these chemical industries make their own salt using solar evaporation of seawater using traditional methods with salt pans. Large area of land is required for this purpose and solar evaporation is a slow process and it takes months together to convert seawater into salt. It is also labor intensive under harsh conditions.

The author of this article has developed an innovative technology to generate fresh water as well as salt brine suitable for Caustic soda and Soda ash production. By using this novel process, one is able to recover almost 70% fresh water against only 40% fresh water recovered using conventional SWRO process, and also recover about 7- 9% saturated brine simultaneously. Chemical industries currently producing salt using solar evaporation are unable to meet their demand or expand their production due to lack of salt. The price of salt is steadily increasing due to supply demand gap and also due to uncertainties in weather pattern due to global warming. This result in increased cost of production and many small and medium producers of these chemicals are unable to compete with large industries. Moreover, countries like Australia who have vast arid land can produce large quantities of salt   with mechanized process  competitively; Australia is currently exporting salt to countries like Japan, while countries like India and China are unable to compete in the international market with their age-old salt pans using  manual labor. In solar evaporation the water is simply evaporated.

Currently these chemical industries use the solar salt which has a number of impurities, and it requires an elaborate purification process. Moreover the salt can be used as a raw material only in the form of saturated brine without any impurities. Any impurity is detrimental to the Electrolytic process where the salt brine is converted into Caustic soda and Soda ash. Chemical industries use deionized water to dissolve solar salt to make saturated brine and then purify them using number of chemicals before it can be used as a raw material for the production of Caustic soda or Soda ash. The cost of such purified brine is many times costlier than the raw salt. This in turn increase the cost of chemicals produced.

In this new process, seawater is pumped into the system where it is separated into 70% fresh water meeting WHO specifications for drinking purpose, and 7-10% saturated pure brine suitable for production of caustic soda and Soda ash. These chemical industries also use large quantities of process water for various purposes and they can use the above 70% water in their process. Only 15-20% of unutilized seawater is discharged back into the sea in this process, compared to 65% toxic discharge from convention desalination plants. This new technology is efficient and environmentally friendly and generates value added brine as a by-product. It is a win situation for the industries and the environment. The technology has been recently patented and is available for licensing on a non-exclusive or exclusive basis. The advantage of this technology is any Caustic soda or Soda ash plant located near the seashore can produce their salt brine directly from seawater without stock piling solar salt for months together or transporting over a long distance or importing from overseas.

Government and industries can join together to set up such plants where Governments can buy water for distribution and industries can use salt brine as raw material for their chemical production. Setting up a desalination plants only for supplying drinking water to the public is not a smart way to cut the cost of drinking water. For example, the Victorian Government in Australia has set up a large desalination plant to supply drinking water. This plant was set up by a foreign company on BOOT (build, own and operate basis) and water is sold to the Government on ‘take or pay’ basis. Currently the water storage level at catchment area is nearly 80% of its capacity and the Government is unlikely to use desalinated water for some years to come. However, the Government is legally bound by a contract to buy water or pay the contracted value, even if Government does not need water. Such contracts can be avoided in the future by Governments by joining with industries who require salt brine 24×7  throughout the year, thus mitigating the risk involved by  expensive legal contracts.


People in the chemical field will understand the concept of ‘irreversibility’. Certain chemical reactions can go only in one direction and but not in the reverse direction. But some reactions can go on either direction and we can manipulate such reactions to our advantages. This concept has been successfully used in designing many chemical reactions in the past and many innovative industrial and consumer products emerged out of it. But such irreversible reactions also have irreversible consequences because it can irreversibly damage the environment we live in. There is no way such damage can be reversed. That is why a new branch of science called ‘Green Chemistry’ is now emerging to address some of the damages caused by irreversible chemical reactions. It also helps to substitute many synthetic products with natural products. In the past many food colors were made out of coal-tar known as coal-tar dyes. These dyes are used even now in many commercial products. Most of such applications were merely based on commercial attractiveness rather than health issues. Many such products have deleterious health effects and few of them are carcinogenic. We learnt from past mistakes and moved on to new products with less health hazards. But the commercial world has grown into a power lobby who can even decide the fate of a country by influencing political leaders. Today our commercial and financial world has grown so powerful that they can even decides who can be the next president of a country rather than people and policies. They can even manipulate people’s opinion with powerful advertisements and propaganda tactics by flexing their financial muscles.

Combustion of fossil fuel is one such example of ‘irreversibility’ because once we combust coal, oil or  gas,  it will be decomposed into oxides of Carbon, oxide of  Nitrogen and also oxides of Sulfur and Phosphorous depending upon the source of fossil fuel  and purification methods used. These greenhouse gases once emitted into the atmosphere we cannot recover them back. Coal once combusted it is no longer a coal. This critical fact is going to decide our future world for generations to come. Can we bring back billions of tons of Carbon we already emitted into the atmosphere from the time of our industrial revolution? Politicians will pretend not to answer these question and financial and industries lobby will evade these question by highlighting the ‘advancement made by industrial revolutions’. People need electricity and they have neither time nor resources to find an alternative on their own. It is open and free for all. People can be skeptical about these issues because it is ‘inconvenient for them’ to change But can we sustain such a situation?

Irreversibility does not confine only to chemical reactions but also for the environment and sustainability because all are intricately interconnected.Minig industries have scared the earth, power plants polluted the air with greenhouse emission and chemical industries polluted water and these damages are irreversible. When minerals become metals, buried coal becomes power and water becomes toxic effluent then we leave behind an earth that will be uninhabitable for our future generations and all the living species in the world. Is it sustainable and can we call it progress and prosperity? Once we lose pristine Nature by our irreversible actions then that is a perfect recipe for a disaster and no science or technology can save human species from extinction. One need not be scientist to understand these simple facts of life. Each traditional land owners such as Aborigines of Australia or Indians of America and shamans of Indonesia have traditionally known and passed on their knowledge for generations. They too are slowly becoming extinct species in our scientific world because of our irreversible actions. Renewability is the key to sustainability because renewability does not cause irreversible damage to Nature.

Governments and industries seek comfort from the fact that Global Warming is not directly linked with greenhouse gas emissions and there is no concrete scientific proof yet, linking these two, and think they can carry on the business as usual. Few scientists in the scientific communities also have backed such sentiments. Alternative technologies such as renewable energy technologies are expensive and cannot compete with fossil fuel based  power plants in near terms. Advanced renewable technologies need rare earth materials such as Lanthanum, cerium, praseodymium, neodymium, cobalt and lithium that are used in electric vehicle batteries; Neodymium, praseodymium and dysprosium that are used in magnets for electric vehicles and wind turbines. Lanthanum, cerium, europium, terbium and yttrium that are used in Phosphors for energy-efficient lighting; Indium, gallium and tellurium that are used in solar cells. The supply of these materials are limited or confined to few countries such as China. These new material also need more energy to mine, process and extract  using only fossil fuel generated power. Transport vehicles such as Hybrid or Electrical cars require a substantial amount of rare earth material such as Lithium for Battery production. The cost of Lithium batteries according to Centre for Transportation, Argonne National Laboratory is:


Battery type         Base line                       Optimistic              Goal


High energy          $706/kwh                   $200/kwh           >150/kwh

35kwh                  $, 24,723                      $ 8767

High-power           $, 2,486                       $ 1,095                   $300

100 10A-h cell


The cost and maintenance of such vehicles are expensive compared to gasoline cars. The looming financial crisis, unemployment and political instability in many parts of the world have overshadowed the problem of greenhouse house and global warming. Governments in power are trying to postpone the issue of global warming as long as possible because they are unpopular among their public, who are increasingly wary of  high energy cost and their household budgets.

Industrialized countries such as US, China, India and Australia have projected their production and use of their coal, oil and gas usage in the future, which are steadily on the rise. Australia’s mining and resources industries are booming with increasing production of Coal, Coal seam methane gas, LNG, Iron ore, copper, Nickel and Gold. Increasing demand by growing economies such as India and China have propelled the production of coal and LNG and other minerals in Australia. The booming mining and shipping industries of Australia have prompted UNESCO to warn Australia about the impending danger of ‘Great Barrier reef’ being destroyed by its busy shipping activities. The Great Barrier Reef is the world’s largest coral reef ecosystem. The only living organic collective visible from space, it is considered one of the seven natural wonders of the world, and is a World Heritage listed area.

It boosts the Queensland’s image of sun, swimming and tropical islands, and around 2 million people visit the reef every year, generating more than $2 billion in direct tourism revenue in the area. The mining boom brings revenue but it also brings natural disasters and destruction of its natural wonders. The net effect will be destruction of Nature and displacement of people at the cost of mining revenue. But how long such a boom will last, and if the economies of China and India starts slowing down then, what happens to all the investments and the damage caused?

The above developments paint a grim picture on global warming. The world has witnessed natural disasters causing huge human and financial losses. The natural disasters have costed an economic loss of nearly 13 to 30 billion dollars in the past two years in Australia alone. Yet, people and Governments want a ‘concrete proof’ that man-made greenhouse gases causes global warming and triggers natural disasters. Well, we can carry on such conversation indefinitely till we reach a point of no return. “Wisdom comes from experience; but experience comes from foolishness”.

Those who studied chemistry and conducted laboratory experiments in universities will be familiar with precautionary measures we take to avoid  accidents. Aprons, gloves, goggles and fume cub-boards with exhaust fans are some few examples of protective measures from flames, hot plates and fumes. The blue color of the flame represented the degree of hotness of the flame from Bunsen burner; the pungent smell pointed to the ‘Gas plant’ that generated ‘water gas’ for Bunsen burners. The familiar smells of chemicals would bring ‘nostalgic memories’ of college days. Each bottle of chemicals would display a sign of warning ‘Danger or Poison’. We could recognize and identify even traces of  gases or fumes or chemicals immediately. Those memories embedded deeply in our memories and I vividly remembered even after few decades I left university.

I could smell traces of Chlorine in the air even at a distance of 20 miles from a Chloroalkali plant in sixties, when air pollution controls were not stringent. People who lived around the factory probably were used to live with that smell for generations. Many families had not breathed  fresh air in their life time, because they have not breathed air without traces of chlorine.They lived all their lives in the same place because agriculture was their profession. Many people developed breathing problems during  their old ages and died of asthma and tuberclosis.The impact of these fumes cannot be felt in months and years but certainly can be felt after decades especially at old ages, when the body’s immune system deteriorates. Bhopal gas accident in India is a grim reminder of  such tragedy of chemical accidents and how they can contaminate air, water and earth and degrade human lives. But we learnt any lessons from those accidents?

During experimental thermonuclear explosion in the desert of Australia by then British army, people were directly exposed to nuclear radiation. Many of those  who saw this explosion developed some form of cancer or other later in their life .They were treated as heroes then. After several decades of this incident, many exposed to this experiment are now demanding compensation from current British government. But have we learnt any lessons from those incidents? Many politicians still advocate ‘Nuclear energy as a safe and clean energy’. Yes, until we meet with an another accident!

We human beings identified the presence of  chemicals in Nature and used them for our scientific developments. We identified fossil fuels as ‘Hydrocarbons’ and burn them to generate power and to run our cars. We emit toxic gases and fumes every second of our lives, when we switch our lights on or start our cars.Imagine the amount of gases and fumes we emit everyday all over the world by billions of people for several decades. It is a simple common sense that we are responsible for these emissions and we contaminate the air we breathe. Nature does not burn Hydrocarbons everyday or every month or every year. In fact Nature buried these Hydrocarbons deep down the earth like we bury our dead.

Can people who breathed Chlorine for decades and died of asthma or tuberculosis prove that they died due constant inhalation of Chlorine emitted by the Chloroalkali plant? The Court and Authorities will demand ‘hard evidence’ to prove that Chlorine emitted by Chloroalkli plants caused these diseases. We use science when it suits us and we become skeptics when it does not suit us. They know it is almost impossible to prove such cases in our legal system and they can get away scot-free. The same argument applies to our ‘Greenhouse gas emission’ and ‘Global warming’.

We contaminate  our air, water and earth with our population explosion, industrialization and our life styles. Yet, major industrialized countries are not willing to cut their emissions but want to carry on their ‘economic growth’. But these countries got it completely wrong. In chemical experiments, one can draw conclusions by ‘observations’ and ‘Inference’. Inference is a scientific tool and not a guess work. From overwhelming evidences of natural disasters occurring around the world one can ‘infer’ that human activities cause these disasters. Nature is now showing this by devastating ‘the business and economic’ interest of nations because that is the only way Governments can learn lessons. They don’t need ‘harder evidence’ than  monetary losses. According to recent reports:

“The monetary losses from 2011’s natural catastrophes reached a record $380 billion, surpassing the previous record of $220 billion set in 2005. The year’s three costliest natural catastrophes were the March earthquake and tsunami in Japan (costing $210 billion), the August-November floods in Thailand ($40 billion), and the February earthquake in New Zealand ($16 billion).

The report notes that Asia experienced 70 percent, or $265 billion, of the total monetary losses from natural disasters around the world—up from an average share of 38 percent between 1980 and 2010. This can be attributed to the earthquake and tsunami in Japan, as well as the devastating floods in Thailand: Thailand’s summer monsoons, probably influenced by a very intensive La Niña situation, created the costliest flooding to date, with $40 billion in losses.”

Dirty coal is still a popular choice for power generation around the world, irrespective of the status of the country, whether industrially advanced or backward. The abundant availability and cheap cost, makes coal more attractive from investor’s point of view; they care less for the environment, while Governments turn a blind eye to all the emissions and pollutions. It is a question of survival for millions of people who work in coal mines and industries. It is one of the toughest challenges many Government are facing. Take for example India; about 65% of power generation still comes from coal. The import of coal increases year after year and there is no immediate solution in sight. Indian coal is a low-grade coal with very high ash content. Each coal-fired power plant generates a huge amount of fly ash and they stockpile them; supposed to be used in the production of Portland cement. It is a big business.

China and Indonesia too uses coal as a major fuel for power generation. But they have come out with an innovative and pragmatic method of using coal. They use coal-water-slurry (CWS), a finely pulverized high  grade coal (calorific value 5100-6100Kcal/kg) in water. They use some chemical additives that make the slurry a homogeneous fluid, similar to a Hydrocarbon such as Heavy fuel oil (HFO).The advantage with CWS is it can be easily pumped and injected into a furnace or boiler using ceramic nozzles, obviously to avoid erosion due the abrasive nature of coal, just like firing diesel or heavy oil. According to the literature, 1.8 -2.2 tons of CWS is equal to 1 ton of Heavy fuel oil (HFO) and it costs about the same. It cost only US$ 62 million to retrofit an existing coal-fired power plant with CWS system and the yearly savings are estimated at US$ 41 mil per year, an attractive rerun on investment.

The beautiful aspect of this method is it generates Hydrogen rich Syngas according to the following chemical reaction.

2C + O2+2 H2O ——– 2H2+2 CO2 when the mixture is subject to Gasification instead of mere Combustion.

The combustion efficiency is about 96-99% and the boiler efficiency of more than 90%. It generates less Sulfur dioxide and Nitrogen oxide emissions and good for the environment compared to conventional coal-fired power plants. It is a good technology that needs the attention of Governments especially India, China and Indonesisa.Even coal rich countries like US, Australia should focus on this technology apart from their persuasion such as carbon sequestration.

In fact this will open new avenues for India and China to switch over to Hydrogen economy without making large investments. The coal water slurry fluid has a property similar to a Hydrocarbon as shown below.

Density 65-70% ,Viscosity -1000Cp, Size d< 50 microns, Ash content <7, Sulfur<0.5%. It is easy to handle a liquid than solid coal. pulverized coal is pneumatically conveyed and fired in rotary cement kilns for so many years. There is nothing new about it. Similarly coal water slurry can be a game changer for  the power industry,  if it is combined with Gasification and combined cycle;  it will lead  into Hydrogen based power generation industry using Fuel cell such as Molten Carbonate Fuel cell (MCFC). I believe there is a clear opportunity for the Governments and private industries  to seriously look into CWS technology which I believe, is a ‘precursor’ for Hydrogen economy of the future.

Globe is warming at an unprecedented rate since industrial revolution due to the effect of greenhouse gases in the atmosphere; according to a panel of scientists in IPCC (Intergovernmental Panel on Climate Change).Thousands of scientists from 30 countries formed IPCC under United Nation to study the problem of global warming and reported to the world. IPCC published a detailed report and it gave an apocalyptic scenario about global warming. They warned that the carbon dioxide level in the atmospheres has increased from 316ppm in 1959 (13% higher than preindustrial level) to current level of 380ppm in 2005, which is 35% above preindustrial level. This dramatic increase in the level of CO2 is due to the human activities. The major contributing gases are Carbon dioxide, Methane, Oxides of Nitrogen, CFC (Chlorofluorocarbons) and Ozone present in the atmosphere. Bulk of the emissions is from power plants and automobiles using fossil fuels. Other process industries like cement plants are also major contributors of greenhouse gases. The enhanced effect of global warming is due to the absorption of invisible infrared radiation coming from the warm surface of the earth. On an average, sun’s light reaches the earth at the rate of 343W/m2 and about 30% of this value is reflected and about 70% is absorbed. The amount of invisible infrared radiation absorbed depends on the concentration of greenhouse gases present in the atmosphere.

According to IPCC their findings on global warming are unequivocal, and if the world does not act now, then, we will be facing dire consequences in the near future. Doubling CO2 emission will increase the global temperature from 2-4.5C. But many skeptics say the IPCC report is apocryphal and they have their own theories to support their skepticism. Many climate models proposed by various international institutions projects an average temperature rise  of 3.4C above  year 2000 level if we do nothing and carry on the “business as usual”. The consequences of global warming are far-reaching. An increase of 3C rise in temperature will result in sea level rise up to 4 to 6 mts in the next few thousand years.

About 10% of the world population lives in less than 10 mts above sea level and majority of population lives within 10km of sea level. We have already witnessed few islands in pacific (example, Bougainvillea, Sulawesi) inundated with seawater. Maldives and Bangladesh are good examples.

They predict shortage of fresh water in many parts of the world and severe draught and flooding in other parts of the world. We have already witnessed these incidents in Northern Queensland in Australia and in Europe, and prolonged draught in Texas, bushfires in Australia and in Russia. Majority of Indian subcontinent is suffering from lack of drinking water. Unscrupulous exploitation of ground water for agriculture purpose has made the situation worse. Many plants, animals and species will face greater risk of extinction. An increasing acidity in seawater due to excess absorption of carbon dioxide will affect aquatic organisms such as shell, coral and shellfish. We are already witnessing bleaching of corals at Great Barrier Reef in Australia. Global warming will displace millions of people due to draught and flooding and consequently leave millions of children malnourished. Water borne diseases and infectious diseases will affect many people. Tropical diseases such as dengue and malaria will be widespread.

These consequences are real, if the world does not act on greenhouse emissions. One need not be a rocket scientist to understand that human behavior and activity has caused irreversible damage to the plant earth for several decades. We unearthed fossil fuels and converted them into plastics and dumped them in every water ways, parks and beaches. The exponential growth in population and industries has driven many animals, tropical forests into extinction. Each and every one of us who are 50 years and above would have witnessed the unfolding consequences of environmental degradation in our life time. What kind of plant earth we will be leaving behind for our future generations?

Every religion on earth has predicted the future of humanity and the last days and hours with deadly consequences for their actions. All native people whether they are Indians from Americas, Aborigines of Australia or Shamans of Indonesia or Natives of Alaska, have time and again raised their voice against indiscriminate destruction of land, water and air in the name of science and industrial growth. But no Government listened to their voice and we are here still struggling with unemployment and poverty.

Mayan civilization is a well-known civilization in ancient world and their seven prophesies are matters of great debate in the recent past. Their prophecy is ominously similar to what IPCC panel predicts except the “end of the world in Dec 2012”. I quote third, fourth and fifth prophesy out of seven Mayan prophecies here, which are relevant to global warming:

“The third prophecy states that there will be change in temperature, producing climatic, geological and social changes in magnitude without patterns and at astonishing speed. One of them will be generated by man in his lack of conscience to care for and protect natural resources of the planet and other generated by sun, which will increase its activity due to increasing vibrations.”

“The fourth prophecy says that anti-ecological conduct of man and greater activity by sun will cause melting of ice in the poles. It will allow the earth to clean itself and green itself again, producing changes in the physical composition of the continents of the planet. The Mayans left a register in the Desdre codices that for every 117 spins of Venus, the Sun suffers new alterations and huge spots or solar eruption appears”.

“The fifth prophecy says that all systems based on fear, on which the civilization based on, will suffer simultaneously with the planet and man will make a transformation to give way to new harmonic reality. The system will fail and man will face himself and in this need to recognize society and continue down the path of evolution that will bring him to understand creation. Only one common spiritual world for all humanity that will end all limits established among many ways to look at God will emerge”.

Perhaps, Jesus too expressed his displeasure with human behavior according to the Gospel of Thomas:

 Jesus said, “Perhaps people think that I have come to cast peace upon the world. They do not know that I have come to cast conflicts upon the earth: fire, sword, war.  For there will be five in a house: there’ll be three against two and two against three, father against son and son against father, and they will stand alone.”

%d bloggers like this: