Skip navigation

Tag Archives: Fuelcell

We have used Hydrocarbon as the source of fuel for our power generation and transportation since industrial revolution. It has resulted in increasing level of man-made Carbon into the atmosphere; and according to the scientists, the level of carbon has reached an unsustainable level and any further emission into the atmosphere will bring catastrophic consequences by way of climate change. We have already saw many natural disasters in a short of span of time. Though there is no direct link established between carbon level in the atmosphere and the global warming, there is certainly enough evidence towards increase in the frequency of natural disasters and increase in the global and ocean temeperatures.We have also seen that Hydrogen is a potential candidate as a source of future energy that can effectively substitute hydrocarbons such as Naphtha or Gasoline. However, hydrogen generation from water using electrolysis is energy intensive and the source of such energy can come only from a renewable source such as solar and wind. Another issue with electrolysis of water for Hydrogen generation is the quality of water used. The quality of water used for electrolysis is high, meeting ASTM Type I Deionized Water preferred, < 0.1 micro Siemen/cm (> 10 megOhm-cm).

A unique desalination technology has been developed by an Australian company to generate on site Hydrogen directly from seawater. In conventional seawater desalination technology using reverse osmosis process only 30-40% of fresh water is recovered as potable water with TDS less than 500 ppm as per WHO standard. The balance highly saline concentrate with TDS above 65,000 ppm is discharged back into the sea which is detrimental to the ocean’s marine life. More and more sweater desalination plants are set up all over the world to mitigate drinking water shortage. This conventional desalination is not only highly inefficient but also causes enormous damage to the marine environment.

The technology developed by the above company will be able to recover almost 75% of fresh water from seawater and also able to convert the concentrate into Caustic soda lye with Hydrogen and Chlorine as by-products by electrolysis. The discharge into the sea is drastically reduced to less than 20% with no toxic chemicals. This technology has a potential to revolutionize the salt and caustic soda industries in the future. Caustic soda is a key raw material for a number of chemical industries including PVC.Conventionally, Caustic soda plants all over the world depends on solar salt for their production of Caustic soda.Hydrogne and Chlorine are by-products.Chlrine is used for the production of PVC (poly vinyl chloride) and Hydrogen is used as a fuel.

In the newly developed technology, the seawater is not only purified from other contaminants such as Calcium, Magnesium and Sulfate ions present in the seawater but also concentrate the seawater almost to a saturation point so that it can be readily used to generate Hydrogen on site. The process is very efficient and commercially attractive because it can recover four valuable products namely, drinking water, Caustic soda lye, Chlorine and Hydrogen. The generated Hydrogen can be used directly in a Fuel cell to generate power to run the electrolysis. This process is very ideal for Caustic soda plants that are now located on seashore. This process can solve drinking water problems around the world because potable water becomes an industrial product. The concentrated seawater can also be converted in a salt by crystallization for food and pharmaceutical applications. There is a growing gap between supply and demand of salt production and most of the chemical industries are depending upon the salt from solar pans.

Another potential advantage with this technology is to use wind power to desalinate the water. Both wind power and Hydrogen will form a clean energy mix. It is a win situation for both water industry and the environment as well as for the salt and chemical industries. In conventional salt production, thousands of hectares of land are used to produce few hundred tons of low quality salt with a year-long production schedule. There is a mis match between the demand for salt by large Caustic soda plants and supply from primitive methods of solar production by solar evaporation contaminating cultivable lands.

The above case is an example of how clean energy technologies can change water, salt and chemical industries and also generate clean power economically, competing with centralized power plants fuelled with hydrocarbons. Innovative technologies can solve problems of water shortage, greenhouse gases, global warming, and environmental pollution not only economically but also environmental friendly way. Industries involved in seawater desalination, salt production, chemical industries such as Caustic soda, Soda ash and PVC interested to learn more on this new technology can write directly to this blog address for further information.

Batteries have become indispensable for energy storage in renewable energy systems such as solar and wind. In fact the cost of battery bank, replacements, operation and maintenance will exceed the cost of PV solar panels for off grid applications during the life cycle of 20 years. However, batteries are continued to be used by electric power utilities for the benefits of peak shaving and load leveling. Battery energy storage facilities give the dynamic benefits such as voltage and frequency regulation, load following, spinning reserve and power factor correction along with the ability to give peak power.

Fuel cell power generation is another attractive option for providing power for electric utilities and commercial buildings due to its high-efficiency and environmentally friendly nature. This type of power production is especially economical, where potential users are faced with high cost in electric power generation from coal or oil, or where environmental constraints are stringent, or where load constraints of transmission and distribution systems are so tight that their new installations are not possible. Both batteries and fuel cells have their own unique advantages to electric power systems. They also contain a great potential to back up severe PV power fluctuations under varying weather conditions.

Photovoltaic power outputs vary depending mainly upon solar insolation and cell temperature.  PV power generator may sometimes experience sharp fluctuations owing to intermittent weather conditions, which causes control problems such as load frequency control, generator voltage control and even system stability.  Therefore there is a need for backup power facilities in the PV power generation.   Fuel cells and batteries are able to respond very fast to load changes because their electricity is generated by chemical reactions. A 14.4kW lead acid battery running at 600A has greatest load gradient of 300 A/sec, a phosphoric-acid fuel cell system can match a demand that varies by more than half its rated output within 0.1 second. The dynamic response time of a 20kW solid-oxide fuel cell power plant is less than 4 second when a load increases from 1 to 100%, and it is less than 2 msec when a load decreases from 100 to 1%.  Factory assembled units provides fuel cell and battery power plants with short lead-time from planning to installation. This modular production enables them to be added in varying increments of capacity, to match the power plant capacity to expected load growth. In contrast, the installation of a single large conventional power plant may produce excess capacity for several years, especially if the load growth rate is low.  Due to their multiple parallel modular units and absence of combustion and electromechanical rotary devices, fuel cell and battery power plants are more reliable than any other forms of power generation. Fuel cells are expected to obtain performance reliability near 85%. Consequently, a utility that installs a number of fuel cell or battery power plants is able to cut its reserve margin capacity while maintaining a constant level of the system reliability. The electrochemical conversion processes of fuel cells and batteries are silent because they do not have any major rotating devices or combustion.  Water requirement for their operation is very little while conventional power plants require a massive amount of water for system cooling.

Therefore, they can eliminate water quality problems created by the conventional plants’ thermal discharges. Air pollutant emission levels of fuel cells and batteries are none or very little. Emissions of SO2 and NOx in the fuel cell power plant are 0.003 lb/MWh and 0.0004 lb/MWh respectively. Those values are projected to be about 1,000 times smaller than those of fossil-fuel power plants since fuel cells do not rely on combustion process. These environmentally friendly characteristics make it possible for those power plants to be located close to load centers in urban and suburban area. It can also cut energy losses and costs associated with transmission and distribution equipment. Their site near load centers may also cut the likelihood of power outage.

Electricity is produced in a storage battery by electro-chemical reactions. Similar chemical reactions take place in a fuel cell, but there is a difference between them with respect to fuel storage. In storage batteries chemical energy is stored in the positive/negative electrodes of the batteries. In fuel cells, however, the fuels are stored externally and need to be fed into the electrodes continuously when the fuel cells are operated to generate electricity.

Power generation in fuel cells is not limited by the Carnot Cycle in the view that they directly convert available chemical free energy to electrical energy than going through combustion processes.  Therefore fuel cell is a more efficient power conversion technology than the conventional steam-applying power generations. Fuel cell is a one-step process to generate electricity, the conventional power generator has several steps for electricity generation and each step incurs a certain amount of energy loss. Fuel cell power systems have around 40-60% efficiencies depending on the type of electrolytes. For example, the efficiencies of phosphoric-acid fuel cells and molten-carbonate fuel cells are 40-45% and 50-60%, respectively. Furthermore, the fuel cell efficiency is usually independent of size; small power plants run as efficiently as large ones. Battery power systems themselves have high energy efficiencies of nearly 80%, but their overall system efficiencies from fuel through the batteries to converted ac power are reduced to below 30%. This is due to energy losses taking place when one energy form is converted to another

A battery with a rated capacity of 200Ah battery will give less than 200 Ah. At less than 20A of discharge rates, the battery will give more that 200 Ah. The capacity of a battery is specified by their time rate of discharge. As the battery discharges, its terminal voltage, the product of the load current and the battery internal resistance gradually decreases. There is also a reduction in battery capacity with increasing rate of discharge. At 1-hr discharge rate, the available capacity is only 55% of that obtained at 20-hr rate. This is because there is insufficient time for the stronger acid to replace the weak acid inside the battery as the discharge proceeds.   For fuel cell power systems, they have equally high-efficiency at both partial and full loads. The customer’s demand for electrical energy is not always constant. So for a power utility to keep adjustment to this changing demand, either large base-load power plants must sometimes run at part load, or smaller peaking units must be used during periods of high demand. Either way, efficiency suffers or pollution increases. Fuel cell systems have a greater efficiency at full load and this high-efficiency is retained as load diminishes, so inefficient peaking generators may not be needed.

Fuel cells have an advantage over storage batteries in the respect of operational flexibility. Batteries need several hours for recharging after they are fully discharged. During discharge the batteries’ electrode materials are lost to the electrolyte, and the electrode materials can be recovered during the recharging process. Over time there is a net loss of such materials, which may be permanently lost when the battery goes through a deep discharge. The limited storage capacity of the batteries implies that it is impossible for them to run beyond several hours.

Fuel cells do not undergo such material changes. The fuel stored outside the cells can quickly be replenished, so they do not run down as long as the fuel can be supplied.   The fuel cells show higher energy density than the batteries when they run for more than 2 hours. It means that fuel cell power systems with relatively small weight and volume can produce large energy outputs. That will give the operators in central control centers for the flexibility needed for more efficient use of the capital-intensive fuel cell power plants.

In addition, where hydrogen storage is possible, renewable power sources can drive an electrolysis process to produce hydrogen gas during off-peak periods that will be used to run the fuel cells during peak demands. The usage of storage batteries in an electric utility industry is expected to increase for the purposes of load leveling at peak loads, real-time frequency control, and stabilizing transmission lines. When integrated with photovoltaic systems, the batteries are required to suppress the PV power fluctuations due to the changes of solar intensity and cell temperature. The fact that the PV power outputs change sharply under cloudy  weather conditions makes it hard to decide the capacity of the battery power plants since their discharging rates are not constant. For a lead-acid battery, the most applicable battery technology for photovoltaic applications to date, the depth of discharge should not exceed 80% because the deep discharge cycle reduces its effective lifetime. In order to prevent the deep discharge and to supplement varying the PV powers generated on cloudy weather days, the battery capacity must be large. Moreover, the large battery capacity is usually not fully used, but for only several days. Fuel cells integrated with photovoltaic systems can give smoother operation. The fuel cell system is capable of responding quickly enough to level the combined power output of the hybrid PV-fuel cell system in case of severe changes in PV power output. Such a fast time response capability allows a utility to lower its need for on-line spinning reserve. The flexibility of longer daily operation also makes it possible for the fuel cells to do more than the roles of gas-fired power plants. Gas turbines are not economical for a purpose of load following because their efficiencies become lower and operating costs get higher at less than full load conditions

Fuel cell does not emit any emission except water vapor and there is absolutely no carbon emission.  However, storage batteries themselves do not contain any environmental impacts even though the battery charging sources produce various emissions and solid wastes. When an Electrolyzer is used to generate Hydrogen on site to fuel the Fuel cell, the cost of the system comes down due to much reduction in the capacity of the battery. The specific cost of energy and NPC is lower than fully backed battery system.

During dismantling, battery power plants require a significant amount of care for their disposal to prevent toxic materials from spreading around. All batteries that are commercially viable or under development for power system applications contain hazardous and toxic materials such as lead, cadmium, sodium, sulfur, bromine, etc. Since the batteries have no salvage value and must be treated as hazardous wastes, disposal of spent batteries is an issue. Recycling batteries is encouraged and not placing them in a landfill. One method favoring recycling of spent batteries is regulation. Thermal treatment for the lead-acid and cadmium-containing batteries is needed to recover lead and cadmium. Sodium-sulfur and zinc bromine batteries are also required to be treated before disposal.

Both batteries and fuel cells are able to respond very fast to system load changes because they produce electricity by chemical reactions inside them. Their fast load-response capability can nicely support the sharp PV power variations resulted from weather changes.  However, there are subtle different attributes between batteries and fuel cells when they are applied to a PV power backup option. Power generation in fuel cell power plants is not limited by the Carnot Cycle, so they can meet high power conversion efficiency. Even taking into account the losses due to activation over potential and ohmic losses, the fuel cells still have high efficiencies from 40% to 60%. For example, efficiencies of PAFCs and MCFCs are 40-45% and 50-60% respectively. Battery power plants, however, themselves have high energy efficiency of nearly 80%, but the overall system efficiency from raw fuel through the batteries to the converted ac power is reduced to about 30%.

A battery’s terminal voltage gradually decreases as the battery discharges due to a proportional decrease of its current. A battery capacity reduces with increasing rate of discharge, so its full capacity cannot be used when it discharges at high rates. On the other hand, fuel cell power plants have equally high-efficiency at both partial and full loads. This feature allows the fuel cells to be able to follow a changing demand without losing efficiency. The limited storage capacity of batteries indicates that it is impossible for them to run beyond several hours. The batteries when fully discharged need several hours to be recharged.

For its use in PV power connections, it is as hard   to estimate the exact capacity of the batteries. In order to prevent the batteries’ deep discharge and to supplement the varying PV powers on some cloudy weather days, the battery capacity should be large, but that large capacity is not fully utilized on shiny days. For fuel cells, they do not contain such an operational time restriction as long as the fuel can be supplied. Thus, the fuel cell power plants can give operational flexibility with the operators in central control centers by utilizing them efficiently. As intermediate power generation sources, fuel cell power plants may replace coal-fired or nuclear units under forced outage or on maintenance. For the PV power backup the batteries’ discharge rate is irregular and their full capacity may usually not be consumed. So, it is difficult to design an ideal capacity of the battery systems for support of the PV power variations and to economically run them. Instead of batteries fuel cell power plants show diverse operational flexibility for either a PV power backup or a support of power system operation.


PV solar is expanding as a potential renewable energy source for each house, and the cost of solar panels are slowly coming down as the volume of production increases. However, the intermittent nature of solar energy is still an issue, especially for off grid and remote locations. Now solar energy is stored using lead acid batteries for such applications and inverters become part of the system. The capacity of the battery bank is designed to meet the electrical demand and to absorb the fluctuation of the energy generated by solar panels and it varies from place to place. This method stores the electrical energy generated by PV solar in the form of DC current and delivers it in the form of AC current. Though this method is the simplest one for remote locations, storing solar power in the form of Hydrogen is more economical and environmentally friendly in the long run.

Solar energy can directly be used to generate Hydrogen using solid polymer electrolyzers and stored in cyclinders.The stored Hydrogen can then be used to fuel a stationary Fuel cell to generate power on site. One can design a system by integrating various components in such a way; the Hydrogen generated by solar energy is used to generate power on site as and when required. By this method one can generate required power throughout the day 24×7 irrespective of the availability of sun. The system integration involves various components supplied by various manufacturers with various specifications and the success of a system depends on the careful design using data acquired over a time on a specific location.

Many winds to Hydrogen projects also have been tested in locations around the world.NREL (National renewable energy laboratory, USA) has conducted number of tests by integrating various components such as PV solar and wind turbines with Electrolyzers (both PEM electroylzers and alkaline electrolyzers) and Hydrogen IC engines for remote power generation as well as for fuelling vehicles with Hydrogen. Though the cost of this system is still expensive, such integration offers enormous potential as a clean energy source for remote locations without any grid power. When one takes into account the fluctuating oil prices, cost of global warming, cost of power transmissions and losses during long distance power transmission from fossil fuel power plants, Renewable Hydrogen offers the best and sustainable alternative to fossil fuels. Such a system offers complete independence, energy security, reliability and fixed power tariff.

System integration of renewable energy sources for Hydrogen production and on site power generation using Fuel cell or Hydrogen engine is the key to a successful deployment of solar and wind energy for rural electrification and to remote islands. Such system will offer greater return on investment even to supply power to the grid based on power purchase agreements with Government and private companies. Renewable Hydrogen is the only practical solution for clean power of the future and sooner we embrace this integrated solution better for a cleaner future. Government and private companies investing on oil and gas explorations can focus their attention in developing renewable Hydrogen based solutions so that the cost of Hydrogen can become competitive to fossil fuel. Once the cost of Hydrogen reaches parity with cost of fossil fuel then, it will set the beginning of a green revolution in clean energy.

We now generate electric city from heat, obtained by combustion of fossil fuel such as coal, oil and gas. But such combustion generates not only heat but also greenhouse gases such as Carbon dioxide and oxides of Nirogen.The only alternative to generate power without any greenhouse gas emission is to use a fuel with zero carbon. However, oxides of Nitrogen will still be an issue as long as we use air for combustion because atmospheric air has almost 79% Nitrogen and 21% oxygen. Therefore it becomes necessary to use an alternative fuel as well as an alternative power generation technology in the future to mitigate greenhouse problems.

Hydrogen is an ideal fuel to mitigate greenhouse gases because combustion of Hydrogen with oxygen from air generates only water that is recyclable. Combining Hydrogen with Oxygen using Fuel cell, an electrochemical device is certainly an elegant solution to address greenhouse problems. But why Hydrogen and Fuel cell are not commonly available? Hydrogen is not available freely even though it is abundantly available in nature. It is available as a compound such as water (H2O) or Methane (CH4) and Ammonia (NH3). First we have to isolate Hydrogen from this compound as free Hydrogen and then store it under pressure. Hydrogen can easily form an explosive mixture with Oxygen and it requires careful handling. Moreover it is a very light gas and can easily escape. It has to be compressed and stored under high pressure.

Generation of pure Hydrogen from water using Electrolysis requires more electricity that it can generate. However, Hydrogen cost can be reduced using renewable energy source such as solar thermal. The solar thermal can also supply thermal energy for decomposing Ammonia into Hydrogen and Nitrogen as well as to supply endothermic heat necessary for steam reformation of natural gas into Hydrogen. On-site Hydrogen generation using solar thermal using either electricity or heat can become a commercial reality. Hydrogen generation at higher temperatures such as Ammonia decomposition or steam reformation can be directly used in Fuel cell such as Phosphoric acid Fuel cell.

Phosphoric acid fuel cell is a proven and tested commercial Fuel cell that is used for base load power generation. It is also used for CHP applications. Hydrogen generation using solar thermal and power generation using Fuel cell is already a commercial reality and also an elegant solution to mitigate greenhouse gases. Large scale deployment of Fuel cell and solar thermal will also cut the cost of installations and running cost competing with fossil fuel.Fuecell technology has a potential to become a common solution for both power generation and transportation.

While Government can encourage renewable energy by subsidizing PV solar panels and discourage fossil fuel by imposing carbon tax, they should give preference and higher tariff for power purchase from Solar thermal and Fuel cell power generators. This will encourage large-scale deployment of Fuel cell as a potential base load power source.

Renewable energy industry has slowly but steadily started expanding in many parts of the world in spite of  high cost of investment and high  cost of energy. Countries like US, Germany and China are now investing on large-scale solar and wind technologies, opening new avenues for investments and employment opportunities. Many of these technologies will undergo several changes over a time before it can completely substitute fossil fuels. How long this process will take will depend upon number of factors; but the single biggest driving force will be ‘the issue global warming and its consequences” and also on uncertainties over oil reserves in the world. Nothing dramatic will happen in the near future except that the concept of alternative source of energy will expand rapidly. It is also an opportunity to discover new forms of fuels, power generation and distribution methods.

The concept of solar energy is now well-recognized as an alternative source of energy because, it is abundantly available, it is clean, generates no pollution and it is silent. The major raw materials such as Silica  and Gallium Arsenide  are  also available but some of the rare earth materials used in PV industries and batteries  are available only in certain parts of the world.  China is endowed with many such rare earth resources. For example, Lithium has limited resources and now bulk of it is produced from natural brines similar to the one at Atacama deserts in South America. It is also available in the form of minerals and ores which many countries are now trying to exploit commercially.

The storage of energy from  solar and wind is  done using deep cycle batteries, most of which are Lead-acid batteries. Bulk of the used Lead acid batteries are recycled but the demand for such batteries keeps increasing. As I mentioned in my previous articles, the sheer weight of these batteries, space required to install them, capacity use, capacity constraints, regular need for  maintenance and life cycle are some of the issues that are critical for renewable industries. In deep cycle batteries, discharging stored energy below certain levels dramatically reduces the life span. Hot climate conditions have certain impacts on maintaining such batteries.Life of a battery is critical because when you calculate the cost of energy over the life cycle of 25 years,the several replacements of battaries and their cost will have a dramatic effect on the cost of energy.

Batteries are indispensable tools in energy industries but their usage can be minimized  to a great extent by using Hydrogen as a storage medium. Let us analyze a simple example of a PV solar system for power generation. We made a computer simulation on three  different  scenario for a PV solar system for a small residence with power consumption at 15,500kwhrs/day. First simulation was based on PV solar, direct grid connect, without  storage batteries but connected directly to the grid, assuming the grid power tariff  is at $0.10/kwhrs and sale to grid tariff at $ 0.30/kwhrs.The second simulation was based on grid independent system  using battery  storage for 8 hrs autonomy. The third simulation is also grid independent, but solar power is connected to an Electrolyzer to generate Hydrogen and store it in a tank. We used a small capacity battery, less than twenty percent  of the capacity used in the earlier case and a Hydrogen storage with Fuel cell along with an inverter. The stored Hydrogen was used to generate power to meet the requirement of the residence, instead of supplying power directly from the battery. The cost of energy using direct grid connect was the lowest $$0.33/kwhrs, while Grid independent with battery storage ,the cost of power was $1,20/kwhrs.In third  scenario with Hydrogen and Fuel cell the cost of power was $ 1.90/kwhrs, but there was surplus Hydrogen in the storage tank. With Hydrogen as a storage medium, the cost of power is high due to initial investment but it is maintenance free and ideal for remote locations.

The Hydrogen and Fuel cell solution though expensive, has a several advantages. The power generated by PV solar is stored in the form of Hydrogen instead of storing in batteries. A single battery is used to keep up a steady current to Electrolyzer but bulk of the energy is stored in the form of Hydrogen. Another advantage with this system is that stored Hydrogen can also be used as a fuel for residential heating as well as to fuel your car.

We know from the famous equation  of Albert Einstein , that a tiny amount of mass is a vast storehouse of energy. But even the molecular Hydrogen as a result of water decomposition, is a promising energy source of the future. However, the amount of energy we use to split water into Hydrogen and Oxygen is higher compared to the amount of energy that Hydrogen can generate using Fuel celll. But we can mitigate this problem by using Renewable   energy such as PV solar, Solar (thermal), wind energy, geothermal energy, and Ocean thermal energy conversion. The cost of renewable energy is still expensive for two reasons;

  1. We are used to cheap energy from fossil fuels for decades, and we have already recovered most of these investments.

2. A complete switch over to renewable energy technologies will require massive new investment. Unlike the investments we made on fossil fuel infrastructures over several decades, we have to invest on renewable Energy development on a massive scale, and we have to deploy them in a shorter span of time, simultaneously all over the world. Currently there is no such infrastructure in renewable energy industry in existence.

Meanwhile the unabated emission of carbon dioxide by fossil fuels is causing global warming. There are many skeptics on the science on global warming. Such skepticism does not stem from the fact that they have a concrete proof but, ‘such skepticism’ serves their vested interest. Politicians who are in power do not want any increase in the cost of energy, which becomes unpopular among people may eventually, throw them out of power. They say they want to serve people with low cost energy but, neither politicians nor the common man understands the consequences of such measures.

It will be our future generations who will face the brunt of this skepticism, by facing fuel shortage or unaffordable cost of fuel, erratic climate change, and frequent natural catastrophies.It is time for the world to act decisively and swiftly and move towards renewable energy, by massive investment and creation of new skills and jobs on a very large scale.

The companies who have massively invested in fossil power plants, and the governments who depend on the support of such companies and who want to keep the energy cost low, because of its popularity, are the major list of scientists opposing main stream scientific assessment of global warming. The hidden cost of environmental challenges and its consequences is much higher than the savings, due to cheap fossil fuels. It requires a paradigm shift and a sense of social justice, in the minds of Governments and companies. It is not all that difficult to switch over to cleaner technologies. In fact most of the technologies are already available and it requires only a ‘will, bold decision and leadership’ by Governments.

Any clean energy solution should be sustainable in the long run. Hydrogen can meet not only the sustainability but even the transition from fossil fuel to Hydrogen will be smooth. To start with all existing fossil fuel infrastructures can be modified towards Hydrogen generation, and fuel cell based Electricity generation  infrastructures. Of course this will require large investment but compared to a complete shift to renewable energy, it will require only a relatively smaller investment. For example, all fuel stations can be converted into Hydrogen stations by simply installing steam reformers, including LNG based fuel stations. All gasoline based automobiles can be either fitted with Hydrogen IC engines, or converted to fuel cells cars similar to Honda FXL models. If the Governments all over the world can agree for such conversion and a complete shift to Hydrogen economy then, it can become a reality in the next decade. We have to focus on ‘Renewable Hydrogen’, which can come from seawater, a waste source of Hydrogen using renewable energy sources, and Biohydrogen  using from waste organic matters. The future generation will not only have a cleaner and affordable fuel but, a more sustainable future!

%d bloggers like this: