Skip navigation

Tag Archives: Gasification

The world is debating on how to cut carbon emission and avert the disastrous consequences of global warming. But the emissions from fossil fuels continue unabated while the impact of global warming is being felt all over the world by changing weathers such as flood and draught. It is very clear that the current rate of carbon emission cannot be contained by merely promoting renewable energy at the current rate. Solar, wind, geothermal, ocean wave and OTEC (ocean thermal energy conversion) offer clean alternative energy but now their total combined percentage of energy generation   is only less than 20% of the total power generation. The rate of Carbon reduction by  renewable energy  do not match  the rate of Carbon emission increase by existing and newly built  fossil power generation and transportation, to keep up the current level of Carbon in the atmosphere. The crux of the problem is the rate of speed with which we can cut the Carbon emission in the stipulated time frame. It is unlikely to happen without active participation of industrialized countries such as US, China, India, Japan, EU and Australia by signing a legally binding agreement in reducing their Carbon emissions to an accepted level. However, they can cut their emissions by increasing the efficiency of their existing power generation and consumption by innovative means.

One potential method of carbon reduction is by substituting fossil fuels with biomass in power generation and transportation. By using this method the energy efficiency is increased from current level of 33% to 50-60% in power generation by using gasification technologies and using Hydrogen for transportation. The Fixed carbon in coal is about 70% while the Carbon content in a biomass is only 0.475 X B (B-mass of oven-dry biomass). For example, the moisture content of a dry wood is about 19%,which means the Carbon mass is only 38% in the biomass. To substitute fossil fuels, the world will need massive amounts of biomass. The current consumption of coal worldwide is 6.647 billion tons/yr  (Source:charts the world will need at least 13 billion tons/yr of biomass to substitute coal .The total biomass available in the world in the form of forest is 420 billion tons which means about 3% of the forest in the world will be required to substitute current level of coal consumption. This is based on the assumption that all bioenergy is based on gasification of wood mass. But in reality there are several other methods of bioenergy such as biogas, biofuels such as alcohol and bio-diesel from vegetable oils etc, which will complement biogasification to cut Carbon emission.

Another potential method is to capture and recover Carbon from existing fossil fuel power plants. The recovered Carbon dioxide has wider industrial applications such as industrial refrigeration and in chemical process industries such as Urea plant. Absorption of Carbon dioxide from flue gas using solvents such as MEA (mono ethanolamine) is a well established technology. The solvent MEA will dissolve Carbon dioxide from the flue gas and the absorbed carbon dioxide will be stripped in a distillation column to separate absorbed carbon dioxide and the solvent. The recovered solvent will be reused.

The carbon emission can be reduced by employing various combinations of methods such as anaerobic digestion of organic matters, generation of syngas by gasification of biomass, production of biofuels, along with other forms of renewable energy sources mentioned above. As I have discussed in my previous articles, Hydrogen is the main source of energy in all forms of Carbon based fuels and generating Hydrogen from water using renewable energy source is one of the most potential and expeditious option to reduce Carbon emission.

Carbon neutral biomass is becoming a potential alternative energy source for fossil fuels in our Carbon constrained economy. More and more waste –to-energy projects is implemented all over the world due to the availability of biomass on a larger scale; thanks to the increasing population and farming activities. New technological developments are taking place side by side to enhance the quality of Biogas for power generation. Distributed power generation using biogas is an ideal method for rural electrification especially, where grid power is unreliable or unavailable. Countries like India which is predominantly an agricultural country, requires steady power for irrigation as well as domestic power and fuel for her villages. Large quantity of biomass in the form of agriculture waste, animal wastes and domestic effluent from sewage treatment plants are readily available for generation of biogas. However, generation of biogas of specified quality is a critical factor in utilizing such large quantities of biomass. In fact, large quantity of biomass can be sensibly used for both power generations as well as for the production of value added chemicals, which are otherwise produced from fossil fuels, by simply integrating suitable technologies and methods depending upon the quantity and quality of biomass available at a specific location. Necessary technology is available to integrate biomass gasification plants with existing coal or oil based power plants as well as with chemical plants such as Methanol and Urea. By such integration, one can gradually change from fossil fuel economy to biofuel economy without incurring very large capital investments and infrastructural changes. For example, a coal or oil-fired power plant can be easily integrated with a large-scale biomass plant so that our dependency on coal or oil can be gradually eliminated.

Generation of biogas using anaerobic digestion is a common method. But this method generates biogas with 60% Methane content only, and it has to be enriched to more than 95% Methane content and free from Sulfur compounds, so that it can substitute piped natural gas with high calorific value or LPG (liquefied petroleum gas). Several methods of biogas purification are available but chemical-free methods such as pressurized water absorption or cryogenic separation or hollow fiber membrane separation are preferred choices.

The resulting purified biogas can be stored under pressure in tanks and supplied to each house through underground pipelines for heating and cooking. Small business and commercial establishments can generate their own power from this gas using spark-ignited reciprocating gas engines (lean burnt gas engines) or micro turbines or PAFCs (phosphoric acid fuel cells) and use the waste heat to air-condition their premises using absorption chillers. In tropical countries like India, such method of distributed power generation is absolutely necessary to eliminate blackouts and grid failures. By using this method, the rural population need not depend upon the state-owned grid supplies but generate their own power and generate their own gas, and need not depend on the supply of rationed LPG cylinders for cooking. If the volume of Bio-methane gas is large enough, then it can also be liquefied into a liquified bio-methane gas (LBG) similar to LNG and LPG. The volume of biomethane gas will be reduced by 600 times, on liquefaction. It can be distributed in small cryogenic cylinders and tanks just like a diesel fuel. The rural population can use this liquid bio-methane gas as a fuel for transportation like cars, trucks, buses, and farm equipment like tractors and even scooters and auto-rickshaws.

Alternatively, large-scale biomass can be converted into syngas by gasification methods so that resulting biomass can be used as a fuel as well as raw materials to manufacture various chemicals. By gasification methods, the biomass can be converted into a syngas (a mixture of Hydrogen and Carbon monoxide) and free from sulfur and other contaminants. Syngas can be directly used for power generation using engines and gas turbines.

Hydrogen rich syngas is a more value added product and serves not only as a fuel for power generation, but also for cooking, heating and cooling. A schematic flow diagram Fig 3,  Fig4 and Fig 6 (Ref: Mitsubishi Heavy Industries Review) shows how gasification of biomass to syngas can  compete with existing fossil fuels for various applications such as for power generation, as a raw material for various chemical synthesis and as a fuel for cooking, heating and cooling and finally as a liquid fuel for transportation. Bio-gasification has a potential to transform our fossil fuel dependant world into Carbon-free world and to help us to mitigate the global warming.

%d bloggers like this: