Skip navigation

Tag Archives: Government

 

The largest power outage that affected 650 million people in India recently was major news around the world. Power outage is common in many countries including industrialized countries during the times of natural disasters such as cyclones, typhoons and flooding. But the power outage that happened in India was purely man-made. It was not just an accident but a culmination of series of failures as the result of many years of negligence, incompetency and wrong policies. Supplying an uninterrupted power for a democratic country like India with 1.2 billion people with 5-8% annual economic growth, mostly run by Governments of various political parties in various states is by no means an easy task. While one can understand the complexities of the problems involved in power generation and distribution, there are certain fundamental rules that can be followed to avoid such recurrence.

The supply and demand gap for power in India is increasing at an accelerated rate due to economic growth but the power generation and distribution capacity do not match this growth. Most of the power infrastructures in India are owned by Governments who control the power generation, distribution, operation and maintenance, financing power projects, supplying power generation equipment, supplying consumables, supplying fuel, transportation of fuel and revenue collection. The entire system is based on the policy of ‘socialistic democracy’, after the independence from the British, though economic liberalization and globalization is relatively a new phenomenon in India. Since every department of power infrastructure is controlled by Government, there is a lack of accountability and competition. Many private companies and foreign companies do not take part in tendering process because it is a futile exercise. Some smart multinational companies set up their manufacturing facilities in India, often in collaboration with Governments to get an entry into one of the largest market in the world. Indigenous Coal is the dominant fuel widely used for power generation though the quality of coal is very low, with ash content as high as 30%.The calorific value of such coal hardly exceeds 3000 kcal/kg, which means more quantity of coal  is required than any other fuel to generate same amount of power. Such coal generates not only low power but also generates a huge amount of ‘fly ash’ (the ash content is the coal comes out as fly ash) causing pollution and waste disposal problems. Large piles of fly ash and age-old cooling towers with a large pool of stagnant water are common sights in many power plants in India. Such low-cost coal does not make any economic sense when considering the amount of fly ash disposal cost and environmental damages. Thanks to research institutions that have developed methods to utilize fly ash in production of Portland cement. The indigenous low-grade coal is the fuel of choice by Indian power industries, though many plants have started importing coal recently from Indonesia and South Africa. Indigenous low-grade coal and cooling water from rivers and underground sources are two major pollutants in India. Water is allocated for power plants at the cost of agriculture. There is a shortage of drinking water in many cities as well as irrigation water for agriculture.

Since most of the power infrastructures are owned by Governments there is a tendency to adopt populace policies  such as power subsidies, free water and power for farmers, low power tariffs etc, making such projects economically unviable in the long run. Most of the State Electricity boards in India are running at a loss and such accumulated losses amounts to staggering figures. The Central electricity authority regulates the power tariff. They calculate the cost of power generation based on specific fuel and fix the power tariff that companies can charge their consumers even before the plant is set up. Most of such tariffs are based on their experience using indigenous low-grade coal and transport cost which are often impractical. Such low power tariffs are not remunerative for private companies and many foreign companies do not invest in large capital-intensive power projects in India for the same reason.

The best option for the Governments to solve energy problems in India is to open to foreign investments and allow latest technologies in power generation and distribution. It is up to the investing companies to decide the right type of fuel, right of equipment, source and procurement, power technology to be adopted and finally the tariff.  India has come a long way since independence and Governments should focus on Governing rather than managing and controlling infrastructure projects. The latest scam widely debated in Indian media is “Coal scam’. It is time India moves away from fossil fuel and allow foreign investments and technologies in renewable energy projects freely without any interference. India needs large investments in building power and water infrastructures and it possible to attract foreign investment only by infusing confidence in investing companies. It is not just the size of the market that is to be attractive for investors but  they also need a conducive, fair and friendly   environment for such investment.

There is a raging debate going on around the world especially in US about the global warming and its causes, among scientists and the public alike. When IPCC released its findings on the connection between greenhouse gas emission and the global warming and its disastrous consequences, there was an overwhelming disbelief and skepticism in many people. In fact many scientists are skeptical even now   about these findings and many of them published their own theories and models to prove their skepticism with elaborate ‘scientific explanations’.   I am not going into details whether greenhouse gas emission induced by human beings causes the globe to warm or not, but certainly we have emitted billions of  tons of Carbon in the form of Carbon dioxide into the atmosphere since industrial revolution. Bulk of these emissions is from power plants fueled by Coal, oil and gas. Why power plants emit so much Carbon into the atmosphere and why Governments around the world allow it in the first place?  When the emission of Oxide of Nitrogen and Sulfur are restricted by EPA why they did not restrict Oxides of carbon? The reason is very simple. They did not have a technology to generate heat without combustion and they did not have a technology to generate power without heat. It was the dawn of industrial revolution and steam engines were introduced using coal as a fuel. The discovery of steam engines was so great and nobody was disturbed by the black smoke it emitted. They knew very well that the efficiency of a steam engine was low as shown by Carnot cycle, yet steam engine was a new discovery and Governments were willing to condone Carbon emission. Governments were happy with steam engine because it could transport millions of people and goods in bulk across the country and Carbon emission was not at all an issue. Moreover carbon emission did not cause any problem like emission of oxides of Sulfur because it was odorless, colorless and it was emitted above the ground level away from human beings. However the effect of Carbon is insidious. Similarly, power generation technology was developed by converting thermal energy into electrical energy with a maximum efficiency of 33%.This means only 33% of the thermal energy released by combustion of coal is converted into electricity. When the resulting electricity is transmitted across thousands of kilometers by high tension grids, further 5-10% power is lost in the transmission. When the high tension power is stepped down through sub stations to lower voltage such as 100/200/400V further 5% power is lost. The net power received by a consumer is only 28% of the heat value of the fuel in the form of electricity. The balance 67% of heat along with Greenhouse gases from the combustion of coal is simply vented out into the atmosphere. It is the most inefficient method to generate power. Any environmental pollution is the direct result of inefficiency of the technology. Governments and EPA around the world ignore this fact .Thank to President Obama who finally introduced the pollution control bill for power plants after 212 years of industrial revolution.  Still this bill did not go far enough to control Carbon emission in its current form. Instead of arguing whether globe is warming due to emission of Carbon by human beings or not, Scientists should focus on improving the science and technology of power generation. For example, the electrical efficiency of a Fuel cell is more than 55% compared to conventional power generation and emits reduced or no carbon. Recent research by MIT shows that such conversion of heat into electricity can be achieved up to 90% compared to current levels of 35%.Had we developed such a technology earlier, probably we will not be discussing about GHG and global warming now. MIT research group is now focusing on developing new type of PV and according to their press release: “Thermal to electric energy conversion with thermophotovoltaics relies on radiation emitted by a hot body, which limits the power per unit area to that of a blackbody. Micro gap thermophotovoltaics take advantage of evanescent waves to obtain higher throughput, with the power per unit area limited by the internal blackbody, which is n2 higher. We propose that even higher power per unit area can be achieved by taking advantage of thermal fluctuations in the near-surface electric fields. For this, we require a converter that couples to dipoles on the hot side, transferring excitation to promote carriers on the cold side which can be used to drive an electrical load. We analyze the simplest implementation of the scheme, in which excitation transfer occurs between matched quantum dots. Next, we examine thermal to electric conversion with a glossy dielectric (aluminum oxide) hot-side surface layer. We show that the throughput power per unit active area can exceed the n2 blackbody limit with this kind of converter. With the use of small quantum dots, the scheme becomes very efficient theoretically, but will require advances in technology to fabricate.” Ref:J.Appl.Phys. 106,094315c(2009); http://dx.doi.org/10.1063/1.3257402 Quantum-coupled single-electron thermal to electric conversion scheme”. Power generation and distribution using renewable energy sources and using Hydrogen as an alternative fuel is now emerging. Distributed energy systems may replace centralized power plants in the future due to frequent grid failures as we have seen recently in India. Most of the ‘black outs’ are caused  by grid failures due to cyclones, tornadoes and other weather related issues, and localized distribution system with combined heat and power offers a better alternative. For those who are skeptical about global warming caused by man-made greenhouse gases the question still remains, “What happened to billions of tons of Caron dioxide emitted into  the atmosphere by power plants and transportation  since industrial revolution?”.          

As the threat of global warming looms large, Governments and Industries are looking for innovative, alternative and renewable energy sources and energy efficiency solutions. But how many alternative energy sources are available and what are their potentials? How to cut our carbon footprint without making larger new investment? How to improve the energy efficiency of the existing systems so that we can increase energy output for the same amount of fuel input and cut the cost of energy? These are some of the fundamental questions Governments and industries are grappling with, for the past few years. We are used to generating cheap energy from coal, oil and gas at the cost of the environment for several decades. We are used to water supply free of cost or at negligible cost for several decades. Governments were able to survive year after year because they were able to supply these two fundamental requirements of the people namely, energy and water at low-cost. But this situation changed swiftly when scientists raised the alarm bells on carbon emission and global warming. Still many Governments, especially industrialized countries with large energy and water usage, are still playing ‘wait and watch’ game, because they cannot afford to increase the tariffs on power and water. Any such increase will make Governments unpopular and their re-election to the office doubtful.

The real alternative to fossil fuels is only solar energy, which is clean, reliable and abundant. All other forms of renewable sources such as wind, geothermal, ocean thermal energy and wave energy are only offshoot of solar energy. The prime source is still the sun and the source of energy is from the chain nuclear fusion reaction of Hydrogen atom. The radiation of this nuclear reaction in the sun has to travel an average distance of 93 million miles to reach the earth, yet it is enough to meet current energy need of  entire humanity by a factor of 20,000 times. But to convert sun’s light and heat energy into Electricity and other useful forms of energy, we need some rare materials which we never used in the past. They are called ‘rare earth materials’ because their available sources and supplies are rare on planet earth. But these exotic and rare earth materials are becoming indispensable in the development of renewable energy products and applications. The future growth of clean energy technologies depend on supply of such rare earth materials.

Fourteen elements and related materials were selected for a criticality assessment by US Government department of energy. Eight of these are rare earth metals, which are valued for their unique magnetic, optical and catalyst properties. The materials are used in clean energy technologies as follows. Lanthanum, cerium, praseodymium, neodymium, cobalt and lithium are used in electric vehicle batteries. Neodymium, praseodymium and dysprosium are used in magnets for electric vehicles and wind turbines. Samarium is also used in magnets. Lanthanum, cerium, europium, terbium and yttrium are used in phosphors for energy-efficient lighting. Indium, gallium and tellurium are used in solar cells. The materials were selected for study based on factors contributing to risk of supply disruption.

Though usage of such material is relatively small, it is anticipated that the growth of clean technologies will need a substantial quantity of these materials. Currently China is endowed with almost 95% of such rare materials in the world. These materials are available in the form of ores and minerals under the earth. They have to be mined, processed and extracted in a pure form so that they can be used in developing clean energy products of the future. We will discuss about such products and technologies in our future articles. The anomaly is the energy required to mine, process and extract these rare earth materials need energy and such energy to have to come only from the sun. It is once again Nature that comes to the rescue of human beings at such critical junctures.

 

How many of us think  about the Sun and Sea, when you drink ‘Mineral water’ from that ‘PVC bottle’; or think about the PVC cables that transmit power to your home; or  eat  meal with a pinch of salt or bicarbonate; or when your municipal water treatment plant use Chlorine to disinfect your drinking  water? All these come from sea water energized by sun’s light, day after day, for several decades.

Every year 111 billion liters of seawater are evaporated using solar energy to produce 1.1 billion liters of brine. The amount of solar energy required to produce this, is equal to 11 million tons of coal, valued at US$ 1.10 billion. The brine is then crystallized to produce 2 million tones of solar salt, the essential raw material for 18 basic inorganic chemicals, including soda ash. Soda ash and Caustic soda are two fundamentals raw materials to chemical industries, as steel is to the engineering industries. This above statistics applies to one single manufacturer, and there are hundreds of manufacturers around the world.

Sun and sea are two great gifts of Nature to mankind. But industries use three great resources  namely Sun, seawater and a vast stretch of land often free of cost. Companies convert  seawater  into  salt using sun’s energy, manufacture valuable chemicals, sell them with profits   and then dump all toxic wastes on the soil and discharge all the industrial effluents back into the sea, polluting not only the source of their raw materials but also killing thousands of marine species they call ‘sea’ as their home.

Governments and EPA (government agencies) turn a blind eye to such pollution and give them clearance year  after year in each country for several decades, because they depend on taxpayer’s money to run their Governments. The manufacturer use these natural resources free of cost or at a fraction of  cost and make huge profits to their shareholders and pay tax to the Government, to make sure  that Governments don’t interfere with their activities. What is really happening is few rich and powerful are able to exploit the natural resources and enrich themselves with the help of Governments  at the cost of earth, water and air, we human beings habitat.

This avaricious exploitation of Nature has driven not only human beings but many animals and species to extinction. Basic needs of life such as water and air are polluted, man-made waste are dumped indiscriminately on soil, polluting the earth and ground water. The plastic manufactured using Nature’s sun and sea water, are dumped back on earth as non-biodegradable pollutants. This is how we repay Nature.

Human beings have caused an irreversible damage to Nature in the name of science, technology and industrialization at the cost of future generation, while enriching few rich and powerful. The damage is irreversible,  because we are forced to continue the same path to avert any disruption to our growth story. As long as we value materials over morals and ethics, there is no future and Nature will eventually turn its back with vengeance. We value how much a person is worth financially  rather  than, what a person can contribute to the uplifting of human beings and Nature. This is the crux of all problems in the world, including the financial crisis we are currently facing. We created the monster called ‘materialism’ and the same monster is now destroying humanity.

 

 

 

Distributed  generation system, is a system that generates power at the point of usage; unlike the centralized electricity generation, where power is generated at a remote place and then distributed to various locations using Power transmission  grids. The centralized systems became popular, due to its convenience, to transmit large power over long distances, under high voltage. However, there are several disadvantages, in centralized power generation and distribution. Most of these power generation plants are using fossil fuels, like coal, oil and gas, whose efficiency is only about 40%; which means, only about 40% of the heat value of the fuel used is converted into electricity, and the balance is a waste heat, discharged in the form of greenhouse gases, into the atmosphere. That is why; power station are the largest emitters of greenhouse gases, in the world. These plants are  not only the biggest emitters of greenhouse gases, but also a very inefficient, because bulk of the fuel is simply combusted and discharged into the atmosphere. With ever-increasing cost of oil and gas, these power plants are ‘white elephants’ that drain the oil and gas resources in the world and turn them into greenhouse gases. Such inefficiencies drive the cost of power high, and also increase the pollution levels. This unabated emission of greenhouse gas has to be curtailed.

At this juncture of global warming, and increasing energy cost, Governments and companies, should encourage distributed energy systems. The advantage with distributed energy systems is, when we generate energy  on site using a fuel, we can use the waste heat  in a productive way, thus increasing the power efficiencies from 40% up to 80-85%.This increase in efficiency, will result, is the reduction in the cost of energy. The power savings from distributed energy system varies  from 10% up to 80%. Industries and business who use continuous processes (24×7) and whose energy bill is substantial, are the ideal candidates for distributed energy systems. It is easier to adapt distributed energy system, with gaseous fuels, like natural gas and Hydrogen, than with liquid fuels such as diesel or solid fuel such as coal.

Distributed energy system can even be installed, using ‘Biogas’, where large quantity of  organic waste or waste water is available throughout the year, like dairy plants, breweries, municipal sewage systems etc.The power generated in DES system, is invariably a direct current (DC), which is usually converted into alternating  using rectifier,   before usage. But, part of this DC load, can be used directly in the form of Dc current, wherever necessary. For example, many consumers are using Light-emitting diode bulbs for lighting, to save energy. In distributed energy system, it is possible to use direct current for these applications because you can save a certain amount of energy in the process of converting DC to AC, and then again AC to DC.In fact, we can connect number of appliances directly  to  direct current.

In addition to the above advantages, we can utilize the waste heat  to generate steam, hot water, chilled water or space airconditioning.For example, if a distributed energy system generates  500 kw Electric power using natural gas, with an efficiency of 30%, the gas consumption will be about 1666 Kws.The remaining waste heat available is about 1166 Kws, which is equal to about 300 TR chilling capacity. This chiller can be used to air-condition an office space. The total efficiency of such system can be as much as 80%.We can reduce the cost of energy as much as 60% or more, in some cases.

Distributed energy system, is the best and cost-effective system to cut energy bills as well as to reduce Greenhouse gas Otherwise the power for air-conditioning has to come from the grid. It is a win situation, for everybody involved. Such system can also be used, with Hydrogen. In fact, the heat value of Hydrogen is much higher than any other fuel, such as coal, oil or gas. Hydrogen is the energy of the future that is not only clean but also sustainable.

%d bloggers like this: