Skip navigation

Tag Archives: Lead–acid battery

Renewable energy industry has slowly but steadily started expanding in many parts of the world in spite of  high cost of investment and high  cost of energy. Countries like US, Germany and China are now investing on large-scale solar and wind technologies, opening new avenues for investments and employment opportunities. Many of these technologies will undergo several changes over a time before it can completely substitute fossil fuels. How long this process will take will depend upon number of factors; but the single biggest driving force will be ‘the issue global warming and its consequences” and also on uncertainties over oil reserves in the world. Nothing dramatic will happen in the near future except that the concept of alternative source of energy will expand rapidly. It is also an opportunity to discover new forms of fuels, power generation and distribution methods.

The concept of solar energy is now well-recognized as an alternative source of energy because, it is abundantly available, it is clean, generates no pollution and it is silent. The major raw materials such as Silica  and Gallium Arsenide  are  also available but some of the rare earth materials used in PV industries and batteries  are available only in certain parts of the world.  China is endowed with many such rare earth resources. For example, Lithium has limited resources and now bulk of it is produced from natural brines similar to the one at Atacama deserts in South America. It is also available in the form of minerals and ores which many countries are now trying to exploit commercially.

The storage of energy from  solar and wind is  done using deep cycle batteries, most of which are Lead-acid batteries. Bulk of the used Lead acid batteries are recycled but the demand for such batteries keeps increasing. As I mentioned in my previous articles, the sheer weight of these batteries, space required to install them, capacity use, capacity constraints, regular need for  maintenance and life cycle are some of the issues that are critical for renewable industries. In deep cycle batteries, discharging stored energy below certain levels dramatically reduces the life span. Hot climate conditions have certain impacts on maintaining such batteries.Life of a battery is critical because when you calculate the cost of energy over the life cycle of 25 years,the several replacements of battaries and their cost will have a dramatic effect on the cost of energy.

Batteries are indispensable tools in energy industries but their usage can be minimized  to a great extent by using Hydrogen as a storage medium. Let us analyze a simple example of a PV solar system for power generation. We made a computer simulation on three  different  scenario for a PV solar system for a small residence with power consumption at 15,500kwhrs/day. First simulation was based on PV solar, direct grid connect, without  storage batteries but connected directly to the grid, assuming the grid power tariff  is at $0.10/kwhrs and sale to grid tariff at $ 0.30/kwhrs.The second simulation was based on grid independent system  using battery  storage for 8 hrs autonomy. The third simulation is also grid independent, but solar power is connected to an Electrolyzer to generate Hydrogen and store it in a tank. We used a small capacity battery, less than twenty percent  of the capacity used in the earlier case and a Hydrogen storage with Fuel cell along with an inverter. The stored Hydrogen was used to generate power to meet the requirement of the residence, instead of supplying power directly from the battery. The cost of energy using direct grid connect was the lowest $$0.33/kwhrs, while Grid independent with battery storage ,the cost of power was $1,20/kwhrs.In third  scenario with Hydrogen and Fuel cell the cost of power was $ 1.90/kwhrs, but there was surplus Hydrogen in the storage tank. With Hydrogen as a storage medium, the cost of power is high due to initial investment but it is maintenance free and ideal for remote locations.

The Hydrogen and Fuel cell solution though expensive, has a several advantages. The power generated by PV solar is stored in the form of Hydrogen instead of storing in batteries. A single battery is used to keep up a steady current to Electrolyzer but bulk of the energy is stored in the form of Hydrogen. Another advantage with this system is that stored Hydrogen can also be used as a fuel for residential heating as well as to fuel your car.

Renewable energy is one of the fastest growing energy sources of our times. But still there are many obstacles to overcome, before it can substitute current methods of electricity generation using fossil fuels, or substitute petrol in cars. The main obstacle is, the intermittent and unpredictable nature of renewable energy sources, such as wind and solar. Wind blows only certain seasons of the year and then wind velocity fluctuates widely in a day. Similarly sun shines only certain hours in a day and the intensity of radiation varies widely in a day. The wind velocity and sun’s radiation intensity are critical components in designing a reliable energy system. It is an anomalous situation, when we need power, there is no sun or wind; when sun shines or wind blows, we may not need any power. How to overcome this anomaly? That is the key, in successfully deploying renewable energy technologies.

Currently we are using batteries to store the energy. When there is a wind with reasonable velocity or sunshine with reasonable radiation intensity, we can generate power and store them in batteries. The wind velocity should be above certain threshold limit, say such as, a least wind velocity of 3mts/sec for amount of hours, while designing a wind based energy system. The same principle applies to solar energy and we need certain minimum solar   intensity and several hours. But in reality, we don’t get these minimum operating parameters, which make the design of a renewable system more complicated.

Batteries can accumulate these small energy generations by intermittent sources of wind and sun, and store them. But these batteries have certain life between 3-5 years and requires regular maintenance, replacements.They also have certain charging and discharging cycles and limitations. At the end of its life, it has to be disposed carefully because these batteries are made of lead and acid, which are toxic materials. Many companies are trying to introduce better technologies such as ‘flow batteries’. But experience shows that such batteries are confined to only smaller capacities. Large scale storage is expensive and sometimes it is not economically feasible. Lithium-ion batteries are more efficient than Lead-acid batteries, but they are more expensive so the renewable energy projects become expensive and cannot compete with conventional fossil fuels, in spite of higher tariffs offered by Government as incentives. Moreover the demand for Lithium-ion batteries will increase substantially in the future, as more and more Electric cars are produced. But lithium sources are limited and it is not sustainable.

The best option to develop renewable energy systems is to generate Hydrogen using renewable energy and store them, instead of storing them in batteries. We can use stored Hydrogen to generate power, or use as fuel for the car, as and when we need. There are no maintenance or disposal problems with Hydrogen storage, when comparing with batteries. Hydrogen generators (electrolyzers) can generate Hydrogen when the intermittent power flows from wind or sun. They can run from a range of capacities from 5 to 100% of rated capacity and they are more suitable for renewable energy sources. But there will be a loss of energy, because the amount of power required to generate Hydrogen, is more than the power generated from the resulting Hydrogen by a Fuelcell.The initial cost will be higher, but it will give operational flexibility with least maintenance, and even adoptable to remote sites. Technology is improving to cut the cost of fuel cells and electrolyzers so that Hydrogen based renewable energy will become a sustainable source of energy in the future. Hydrogen is the only solution that can solve both power generation and transportation problems the world is currently facing.

%d bloggers like this: