Skip navigation

Tag Archives: Nitrogen

People in the chemical field will understand the concept of ‘irreversibility’. Certain chemical reactions can go only in one direction and but not in the reverse direction. But some reactions can go on either direction and we can manipulate such reactions to our advantages. This concept has been successfully used in designing many chemical reactions in the past and many innovative industrial and consumer products emerged out of it. But such irreversible reactions also have irreversible consequences because it can irreversibly damage the environment we live in. There is no way such damage can be reversed. That is why a new branch of science called ‘Green Chemistry’ is now emerging to address some of the damages caused by irreversible chemical reactions. It also helps to substitute many synthetic products with natural products. In the past many food colors were made out of coal-tar known as coal-tar dyes. These dyes are used even now in many commercial products. Most of such applications were merely based on commercial attractiveness rather than health issues. Many such products have deleterious health effects and few of them are carcinogenic. We learnt from past mistakes and moved on to new products with less health hazards. But the commercial world has grown into a power lobby who can even decide the fate of a country by influencing political leaders. Today our commercial and financial world has grown so powerful that they can even decides who can be the next president of a country rather than people and policies. They can even manipulate people’s opinion with powerful advertisements and propaganda tactics by flexing their financial muscles.

Combustion of fossil fuel is one such example of ‘irreversibility’ because once we combust coal, oil or  gas,  it will be decomposed into oxides of Carbon, oxide of  Nitrogen and also oxides of Sulfur and Phosphorous depending upon the source of fossil fuel  and purification methods used. These greenhouse gases once emitted into the atmosphere we cannot recover them back. Coal once combusted it is no longer a coal. This critical fact is going to decide our future world for generations to come. Can we bring back billions of tons of Carbon we already emitted into the atmosphere from the time of our industrial revolution? Politicians will pretend not to answer these question and financial and industries lobby will evade these question by highlighting the ‘advancement made by industrial revolutions’. People need electricity and they have neither time nor resources to find an alternative on their own. It is open and free for all. People can be skeptical about these issues because it is ‘inconvenient for them’ to change But can we sustain such a situation?

Irreversibility does not confine only to chemical reactions but also for the environment and sustainability because all are intricately interconnected.Minig industries have scared the earth, power plants polluted the air with greenhouse emission and chemical industries polluted water and these damages are irreversible. When minerals become metals, buried coal becomes power and water becomes toxic effluent then we leave behind an earth that will be uninhabitable for our future generations and all the living species in the world. Is it sustainable and can we call it progress and prosperity? Once we lose pristine Nature by our irreversible actions then that is a perfect recipe for a disaster and no science or technology can save human species from extinction. One need not be scientist to understand these simple facts of life. Each traditional land owners such as Aborigines of Australia or Indians of America and shamans of Indonesia have traditionally known and passed on their knowledge for generations. They too are slowly becoming extinct species in our scientific world because of our irreversible actions. Renewability is the key to sustainability because renewability does not cause irreversible damage to Nature.

Ammonia is a well-known industrial chemical that is manufactured worldwide as a precursor for the production of Urea. The chemistry and technology of Ammonia synthesis is well-known and well established. It was a land mark achievement to fix atmospheric Nitrogen into the soil in the form of Urea as a fertilizer. It has 17.6% Hydrogen and 82.4% Nitrogen making it an ideal fuel for combustion when compared to Gasoline in terms of greenhouse gas emission because Ammonia no carbon. Handling free Hydrogen has always been a concern due to its explosive nature and lightness. Transportation of Hydrogen in the form of Ammonia is relatively cheaper and safer. A non-regulated Ammonia nursing tank at 265 psi pressure holds 3025kg Ammonia, containing 534kg Hydrogen, because a 5900 gallon Hydrogen tube trailer at 3200 psi pressure, contain only 350kgs of Hydrogen. Low pressure Ammonia tank with less than 25% volume contain more than 53% Hydrogen than a high pressure tube trailer. Ammonia has a lower volumetric energy density compared to other fuels.However, after subtracting energy required to elicit hydrogen from each fuel, hydrogen emerges with highest energy density compared to other fuels, and it is the only fuel which is carbon free. These qualities make Ammonia, a potential  substitute for Gasoline.

Ammonia need not be used as direct combustible fuel in internal combustion engines but it can be used as Hydrogen carrier safely and economically. The Hydrogen resulting from the decomposition of Ammonia can be used as fuel in a Fuel cell car as well as in a combustion engine. It can also be used to generate small on site power using a Fuel cell or IC engine. For example, 534kg Hydrogen can generate Electricity up to 10 MW and up to 6Mw thermal energy using a Fuel cell.

Currently ammonia is manufactured using fossil fuel source such as natural gas or naphtha to generate Hydrogen in the form of Syngas.But this can be effectively substituted with renewable source of Hydrogen such as Electrolysis of water using renewable solar thermal power or wind energy. Alternatively a biogas can be steam reformed to generate Hydrogen similar to natural gas. The generated Hydrogen can be compressed and stored.

Nitrogen forms 79% of atmospheric air and it can be obtained by air liquefaction and separation by distillation or by simple membrane separation method to separate air into Nitrogen and Oxygen. The resulting Nitrogen can be compressed and stored for Ammonia sysnthsis.Production of Ammonia using Bosch Haber process is well-known. Ammonia can be transported in pipelines, in tankers by road, rail or ship to various destinations.

Ammonia can be readily be used as fuel using a spark ignited combustion engine with little changes because Ammonia is classified as non-combustible fuel. Alternatively, it can be decomposed in a catalytic bed reactor and separated into Hydrogen and Nitrogen using PSA (pressure swing adsorption) system. The resulting Hydrogen can be stored to run a Fuel cell car like Honda FCX. Ammonia, as a Hydrogen carrier can substitute gasoline as an alternative fuel for transportation and power generation. All necessary technologies and systems are commercially available to make it a commercial reality.


We  acknowledge that solar energy is a potential renewable energy source of the future. The total energy need of the world is projected in the next 40 years to be 30 TW (terra watts) and only solar energy has a potential to meet the above demand. However, harnessing sun’s energy to its fullest potential is still a long way to go. Concentrated solar power (CSP) offers a greater hope to fill this gap. The main reason is the cost  advantage of CSP compared to PV solar and energy storage technologies and their costs.

The cost of PV solar has steadily decreased in the past few years. Though the cost of solar cell has come down to $0.75 per watt, the overall cost of the PV system is still around $ 3.00 per watt. This is due to the cost of encapsulation; interconnect wiring, mounting of panels, inverters and battery bank. The overall cost of the system will not come down drastically beyond a point. This makes PV solar still more expensive compared to conventional power generation using fossil fuels. People can understand the value of renewable energy and impending dangers of global warming due to greenhouse gases, but the final cost of energy will decide the future of energy sources.

In PV solar the sun’s light energy is directly converted into Electricity, but storing such energy using batteries have certain limitations. PV solar is suitable for small-scale operations but it may not be cost-effective for large-scale base load power generation. The best option will be to harness the sun’s thermal energy and store them and use them to generate power using the conventional and established methods such as steam or gas turbines. Once we generate thermal energy of required capacity then we have number of technologies to harness them into  useful forms. As we mentioned earlier, the thermal energy can trigger a chemical reaction such as formation of Ammonia by reaction between Hydrogen and Nitrogen under pressure, which will release a large amount of thermal energy by exothermic reaction. Such heat can be used to generate steam to run a stem turbine to generate power. The resulting ammonia can be split with concentrated solar power (CSP) into Hydrogen and Nitrogen and the above process can be repeated.

The same system can also be used to split commercial Ammonia into Hydrogen and Nitrogen. The resulting Hydrogen can be separated and stored under pressure. This Hydrogen can be used to fuel Fuel cell cars such as Honda FXC or to generate small-scale power for homes and offices.

By using CSP, there is potential of cost savings as much as 70% compared to PV solar system for the same capacity power generation on a larger scale. Focusing sun’s energy using large diameter parabolic troughs and concentrators, one can generate high temperatures.  Dishes can typically vary in size and configuration from a small diameter of perhaps 1 meter to much larger structures of a dozen or more meters in diameter.  Point focus dish concentrators are mounted on tracking systems that track the sun in two axes, directly pointing at the sun, and the receiver is attached to the dish at the focal point so that as the dish moves, the receiver moves with it.  These point focus systems can generate high temperatures exceeding 800ºC and even 1,800ºC.

The temperature required to run a steam turbine does not exceed 290C and it is quite possible to store thermal energy using mixture of molten salts with high Eutectic points and use them to generate steam. Such large-scale energy storage using lead-acid batteries and power generation using PV solar may not be economical. But it will be economical and technically feasible to harness solar thermal energy using CSP for large-scale base load power generation. It is estimated that the cost of such CSP will compete with traditional power generation using coal or oil in the near future.CSP has potential to generate cost-effective clean power as well as a fuel for transportation.

Majority of current power generation technologies are based on thermodynamic principles of heat and work. Heat is generated by  chemical reactions such as combustion of coal, oil or gas with air or pure oxygen. This heat of combustion is then converted into work by a reciprocating engine or steam turbine of gas turbine. The mechanical energy is converted into electricity in power generation and as a motive force in transportation. The fundamental principles remain the same irrespective of the efficiencies and sophistication we incorporated as we progressed. The efficiency of these systems hardly exceeds 30-40 of the heat input, while the remaining 60-70 heat is wasted. We were also able to use this waste heat and improved the efficiency of the system by way of CHP (combined heat and power) up to 80-85%.But this is possible only in situations where one can use both power and heat simultaneously. In a centralized power plant such large heat simply dissipated as a waste heat through cooling towers and in the flue gas. This is a huge loss of heat because a substantial part of heat of combustion is simply vented into the atmosphere in the form of greenhouse gases. If ‘greenhouse gas’ and ‘Global warming’ were not issues of concern to the world, probably we would have continued our business as usual.

Generation of heat by combustion of hydrocarbon is one example of a chemical reaction. In many chemical reactions, heat is either released or absorbed depending upon the type of reaction, whether it is exothermic or endothermic. Sometimes these chemical reactions are reversible. It may release heat while the reaction moves forward and it may absorb heat while it moves backward in the reverse direction. By selecting such reaction one can make use of such energy transformations to our advantages. One need not release the heat and then release the product of reaction into the air like burning fossil fuels.

Ammonia is one such reaction. When Hydrogen and Nitrogen is reacted in presence of a catalyst under high temperature and pressure the reaction goes forward releasing a large amount of energy as practiced in industries using Heber’s process. The heat released by this reaction can be converted into steam and we can generate power using steam cycle. The resulting Ammonia can further be heated in presence of a catalyst by external heat due to endothermic nature of the reaction and split into Hydrogen and Nitrogen.  However, such heat can be supplied only from external sources. One University in Australia is trying use the above principle by using solar thermal energy as a source of external heat. The advantage of this system is power can be generated without burning any fossil fuel or emitting any greenhouse gas. One can use a renewable energy sources such as solar thermal and also use Ammonia as a storage medium.

Ammonia is a potential source of energy to substitute fossil fuels. However, such Ammonia is now synthesized using Hydrocarbon such as oil and gas. The source of Hydrogen is from synthesis gas resulting from steam reformation of a Hydrocarbon. Hydrogen can also be derived from water using electrolysis using renewable energy source. In both the above cases, renewable energy is the key, without which no Hydrogen can be produced without a Hydrocarbon or an external heat is supplied for splitting Ammonia.

Ammonia can also be split into Hydrogen and Nitrogen using external heat.  The resulting Hydrogen can be used to generate power using a Fuel cell or run a Fuel cell car. Nitrogen also has many industrial applications.Thereoefore ammonia is a potential chemical that can substitute fossil fuels in the new emerging renewable economy.

Synthesis of Ammonia is one of the  remarkable achievements of Chemical engineering in forties .It is a precursor for Urea, the fertilizer  that  brought about ‘Green revolution’ in agriculture industry and helped to achieve record food production all over the world. It was a milestone in modern chemistry to synthesis a molecule containing I atom of Nitrogen and 3 atoms of Hydrogen, represented by NH3 called Ammonia. The HeberBosch process for the production of Ammonia is a well established mature, commercial technology.

The process uses a Hydrocarbon source such as Naphtha or Natural gas as the feed stock to generate a synthesis gas composed of Hydrogen and Carbondioxide.The gas mixture is separated into carbon dioxide and Hydrogen using PSA (pressure swing adsorption ) technology. The resulting Hydrogen is used to combine with Nitrogen to synthesize Ammonia.

The chemical reaction can be represented by the following equation.

N2 + 3H2 ———- 2 NH3

The above reaction takes place at a pressure of 100-200 bars and temperature of 300-500C in presence of  catalysts. It is an exothermic (heat releasing) reaction and the catalyst bed is cooled and maintained at 400C to be efficient.But this process of Hydrogen generation using Hydrocarbon emits greenhouse gases. Alternatively, Hydrogen can be generated using different methods using renewable energy sources using water electrolysis. Such process may be used in the future for this application.

Nitrogen is derived from atmospheric air. The air we breathe has about 79% of Nitrogen and 21% Oxygen. But these two gases can be separated by liquefying the air by cryogenic process and distilling them into two fractions. Alternatively, they can separated using pressure swing adsorption or membrane separation process, utilizing their density differences. In either way, Nitrogen can be separated from atmospheric air. By combining the above Hydrogen and Nitrogen, it is possible to synthesis Ammonia on a commercial-scale.

The ammonia can be easily split into Hydrogen and Nitrogen by passing Ammonia through a bed of Nickel catalyst at 200-400C as and when required to generate on site Hydrogen. This Hydrogen can be used for power generation or to run our cars using PEM Fuelcell.As we have seen previously, we are now looking for various sources of Hydrogen, and Ammonia is one of the promising sources for couple of reasons. The process and technology of Ammonia production, transportation and usage is well documented and has been practiced for few decades. It does not emit  greenhouse gases.Liquified Ammonia has been widely used in air-conditioning and refrigeration systems. Ammonia can be easily metered into any system directly from the cylinder.

It is easier to use Ammonia directly into a convention internal combustion engines in place of Gasoline and this technology has already been practiced in 1880. Ammonia is pungent and any leakage can be easily identified. The advantage of using Ammonia as a fuel in cars, it does not emit any smoke  but only water vapour.It can be admixed with Gasoline or used as 100% anhydrous Ammonia. It also helps in reduction of NO2 emission, especially is diesel engines.

Ammonia has a great potential as a source of future fuel provided the sources of Hydrogen comes from water using renewable technologies or by photo electrolysis using direct sunlight.

%d bloggers like this: